If we have 6.68% NaClO, it is the same as saying--> 6.68 grams NaClO= 100 mL of solution. we can use this as a conversion.
800. mL (6.68 mL/ 100 mL)= 53.4 mL
solution = solute + solvent
solute= NaClO
solvent= H2O
solvent= 800-53.4= 747 mL of H2O
so, we you need 53.4 mL of NaClO and 747 mL of water or 53.4 grams of NaClO and 747 mL of water
Answer:
The mass is 1.4701 grams and the moles is 0.01.
Explanation:
Based on the given question, the volume of the solution is 100 ml or 0.1 L and the molarity of the solution is 0.100 M. The moles of the solute (in the given case calcium chloride dihydride (CaCl2. H2O) can be determined by using the formula,
Molarity = moles of solute/volume of solution in liters
Now putting the values we get,
0.100 = moles of solute/0.1000
Moles of solute = 0.100 * 0.1000
= 0.01 moles
The mass of CaCl2.2H2O can be determined by using the formula,
Moles = mass/molar mass
The molar mass of CaCl2.2H2O is 147.01 gram per mole. Now putting the values we get,
0.01 = mass / 147.01
Mass = 147.01 * 0.01
= 1.4701 grams.
The reaction rate or rate of reaction is the speed at which a chemical reaction takes place, defined as proportional to the increase in the concentration of a product per unit time and to the decrease in the concentration of a reactant per unit time.
Reactions that happen quickly have a high rate of reaction. For example, the chemical weathering of rocks is a very slow reaction: it has a low rate of reaction. Explosions are very fast reactions: they have a high rate of reaction. Rate of reaction is an example of a compound measure.
I just took a quiz on this! It's D!