The kinetic energy theory of matter states that all particles of matter are in constant motion.
Kinetics has to do with some kind of movement, which is why this answer is the only plausible one.
Atmospheric
pressure<span>, sometimes also called barometric pressure, is the pressure exerted by the weight of air in
the </span>atmosphere of Earth<span> (or that of another planet)</span>
1 atm is equivalent to = 101325
Pa
= 760 mmHg
= 760 torr
= 1.01325 bar
So 1.23 atm is equal to
= 124629.8 Pa
= 934.8 mmHg
= 934.8 torr
<span>= 1.2462 bar</span>
Answer:
The correct answer is B. It is spontaneous only at low temperatures.
Explanation:
In thermodynamics, the Gibbs free energy is a thermodynamic potential that can be used to calculate the maximum of reversible work that may be performed by a thermodynamic system at a constant temperature and pressure.
The spontaneity of a reaction is given by the equation:
ΔG = ΔH - TΔS
where:
ΔH: enthalpy variation
T: absolute temperature
ΔS: entropy variation
As the reaction is exothermic, ΔH<0
As the reaction order increases (the reagents are solid and gas and their product is solid), ΔS<0
Therefore, the reaction will be spontaneous when ΔG is negative.
ΔG = ΔH - TΔS
That is, the entropy term must be smaller than the enthalpy term.
Hence, the reaction will be spontaneous only at low temperatures.