a. 43.1 g
b. 38.2%
<h3>Further explanation</h3>
Given
32.5 grams of NaOH
Required
The theoretical yield of Na₂CO₃
The percent yield
Solution
Reaction
2NaOH(s) + CO₂(g) → Na₂CO₃(s) + H₂O(l)
mol NaOH :
= mass : MW
= 32.5 : 40 g/mol
= 0.8125
mol Na₂CO₃ from the equation :
= 1/2 x mol NaOH
= 1/2 x 0.8125
= 0.40625
a.
Mass Na₂CO₃ :
= mol x MW Na₂CO₃
= 0.40625 x 106 g/mol
= 43.0625≈43.1 g
b. % yield = (actual/theoretical) x 100%
%yield = 16.45/43.1 x 1005
%yield = 38.17%≈38.2%
Answer:

Explanation:
Hello!
In this case, since the density in the international system of units is given in terms of kg for the mass and L for the volume, we need to perform a process of units conversions from mg and dL to kg and L as show below:

Best regards!
Answer:
(CH2)3CH3 > CH2CH2CH3 > CH2CH3 > CH3
Explanation:
Giving the following ; CH3, CH2CH3, CH2CH2CH3, (CH2)3CH3
Priority increases as the number of CH2 group increases and vice versa, as such the one with more CH2 group will be the highest priority and the least compound with the small CH2 group attached, will have the smallest priority.
The arrangement is as follows ; (CH2)3CH3 > CH2CH2CH3 > CH2CH3 > CH3
Answer:
sorry don't know wish I could help
The bonds in the SiCl₄ molecules will be more polar.
The polarity of bonds within a molecule depends on the difference in electronegativity of the atoms that are involved in the bond. Chlorine is a more electronegative atom than iodine. Therefore, the electrons in the Si-Cl bond will be more concentrated near the Cl, creating polarity in the bond. Iodine is not as electronegative, so it will not result in a very polarized Si-I bond