Butter won't melt in a fridge because of intermolecular tensions. While the bonds inside of the fat molecules are unbroken, the attractions between the fat molecules are weaker.
What intermolecular forces are present in butter?
The intermolecular forces known as London dispersion forces are the weakest and are most prominent in hydrocarbons. Due to the fact that butter molecules are hydrocarbons, London dispersion forces do exist between them.
How do intermolecular forces affect melting?
More energy is required to stop the attraction between these molecules as the intermolecular forces become more powerful. Because of this, rising intermolecular forces are accompanied with rising melting points.
Which forces are intramolecular and which are intermolecular?
Intramolecular forces are those that hold atoms together within molecules. The forces that hold molecules together are known as intermolecular forces.
Learn more about intermolecular forces: brainly.com/question/9328418
#SPJ4
Impurities selection for doping in group 14 semiconductors is: based on their ability to add more holes and fewer electrons or to add more electrons and reduce the holes.
<h3>Meaning of Semiconductors</h3>
Semiconductors can be defined as any material that has the ability to exhibit some properties of a conductor and some properties of an insulator.
A semiconductor can be used as either a conductor or an insulator when worked upon.
In conclusion, Impurities selection for doping in group 14 semiconductors is: based on their ability to add more holes and fewer electrons or to add more electrons and reduce the holes.
Learn more about semiconductors: brainly.com/question/1918629
#SPJ1
Answer: COMBINED FORCES
When forces act in the same direction, they combine to make a bigger force. When they act in opposite directions, they can cancel one another out. If the forces acting on an object balance, the object does not move, but may change shape.
Explanation:
Answer:
Alkaline batteries stop working when all of the manganese dioxide has been converted.
Explanation: Hope it helps you :)))
Have a good day
Let us assume that there is a 100g sample of Opal. The masses of each element will be:
29.2g Si
33.3g O
37.5g H2O
Now we divide each constituent's mass by its Mr to get the moles present
Si: (29.2 / 28) = 1.04
O: (33.3 / 16) = 2.08
H2O: (37.5 / 18) = 2.08
Now we divide by the smallest number and obtain:
Si: 1
O: 2
H2O: 2
Thus, the empirical formula of Opal is:
SiO2 . 2H2O