I attached the full question.
We know that for a parallel-plate capacitor the surface charge density is given by the following formula:

Where V is the voltage between the plates and d is separation.
Voltage is by definition:

Voltage is analog to the mechanical work done by the force.
Above formula is correct only If the field is constant, and we can assume that it is since no function has been given.
The charge density would then be:

Please note that elecric permittivity of air is very close to elecric permittivity of vacum, it is common to use them <span>interchangeably</span>.
Centripetal acceleration is (speed-squared) / (radius)
CA = (6 m/s)² / (9 m)
CA = (36 m²/s²) / (9 m)
CA = (36/9) (m²/m·s²)
<em>Centripetal acceleration = 4 m/s²</em>
you take a length of ordinary wire, make it into a big loop, and lay it between the poles of a powerful, permanent horseshoe magnet. Now if you connect the two ends of the wire to a battery, the wire will jump up briefly.When an electric current starts to creep along a wire, it creates a magnetic field all around it. If you place the wire near a permanent magnet, this temporary magnetic field interacts with the permanent magnet's field.