According to the Law of Universal Gravitation, the gravitational force is directly proportional to the mass, and inversely proportional to the distance. In this problem, let's assume the celestial bodies to be restricted to the planets and the Sun. Since the distance is specified, the other factor would be the mass. Among all the celestial bodies, the Sun is the most massive. So, the Sun would cause the strongest gravitational pull to the satellite.
Explanation:
Water evaporates from the surface of the earth and through the leaves of the plants and trees by absorbing the heat energy from the surrounding.
This water then converts into vapour and goes up into the atmosphere where the temperature is low in the troposphere and condenses to form the clouds. During the cloud formation the heat form the vapour is absorbed in the troposphere.
These clouds when get saturated then fall in the form of precipitation of water, snow etc. Replenishing back the water of the earth.
Towards
<u>Explanation:</u>
When light is incident at a transparent surface, the transmitted component of the light changes direction at the interface. Another component of the light is reflected at the surface. When a ray of light passes from water to diamond at an angle 45°, its path is bent towards the normal. This is so because water is less dense than the diamond. The refractive index of water (n = 1.33) is less than the refractive index of diamond (n = 2.419).
Answer:
Doubling the large mass
Explanation:
Doubling the destance bewteen the masses will simply make the gravitational force weaker
same with every answer exce