1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
bazaltina [42]
3 years ago
5

At what rate must a cylindrical spaceship rotate if occupants are to experience simulated gravity of 0.50 gg? Assume the spacesh

ip's diameter is 35 mm , and give your answer as the time needed for one revolut
Physics
2 answers:
gulaghasi [49]3 years ago
7 0

Answer:

Time needed for one revolution is 0.38 s

Explanation:

The formula for the frequency of rotation of a spaceship, to create the desired artificial gravity, is as follows:

f = (1/2π)√(a/r)

where,

f = frequency of rotation = ?

a = artificial gravity required = 0.5 g

g = acceleration due to gravity on surface of Earth = 9.8 m/s²

r = radius of ship = 35 mm/2 = 17.5 mm = 17.5 x 10⁻³ m

Therefore,

f = (1/2π)√[(0.5)(9.8 m/s₂)/(17.5 x 10⁻³ m)]

f = 2.66 Hz

Now, for the time required for one revolution, is given as:

Time Period = T = 1/f

T = 1/2.66 Hz

<u>T = 0.38 s</u>

Svetradugi [14.3K]3 years ago
4 0

Answer:

The time needed is T  = 16.8 s

Explanation:

From the question we are told that

      The magnitude of the stimulated acceleration due gravity is  a  =  0.5 g

        The diameter of the spaceship is  d =  35m

       

Generally the force acting on the spaceship is  

       F  =  ma

Given that the spaceship is rotating it implies that the force experienced by the occupant is a centripetal force so

      F  = \frac{mv^2}{r}

Thus  

       ma  =  \frac{mv^2}{r}

=>    \frac{v^2}{r}  =  a

      Generally the speed of this spaceship is mathematically represented as

      v =  \frac{2 \pi}{T}

=>    v^2  =   [\frac{2\pi}{T}] ^2

=>     \frac{\frac{4\pi^2 r^2}{T^2} }{r}  = 0.5g

=>       \frac{4 \pi^2 r }{T^2} =  0.5 g

=>         T  = \sqrt{ \frac{4\pi^2 r}{0.5g}}

substituting values

          T  = \sqrt{ \frac{4* (3.142)^2 *(35)}{0.5 * 9.8}}

         T  = 16.8 s

You might be interested in
Kim throws a beach ball up in the air. It reaches its maximum height 0.50s later. We can ignore air resistance. What was the bea
notka56 [123]

Answer:

The beach ball's velocity at the moment it was tossed into the air is <u>4.9 m/s.</u>

Explanation:

Given:

Time taken by the ball to reach maximum height is, t=0.50\ s

We know that, velocity of an object at the highest point is always zero. So, final velocity of the ball is, v=0\ m/s

Also, acceleration acting on the ball is always due to gravity. So, acceleration of the ball is, a=g=-9.8\ m/s^2

The negative sign is used as acceleration is a vector and it acts in the downward direction.

Now, we have the equation of motion relating initial velocity, final velocity, acceleration and time given as:

v=u+at

Where, 'u' is the initial velocity.

Plug in the given values and solve for 'u'. This gives,

0=u-9.8(0.5)\\u=9.8\times 0.5\\u=4.9\ m/s

Therefore, the beach ball's velocity at the moment it was tossed into the air is 4.9 m/s

3 0
3 years ago
Read 2 more answers
At a certain elevation, the pilot of a balloon has a mass of 120 lb and a weight of 119 lbf. What is the local acceleration of g
Strike441 [17]

Answer:

31.905 ft/s²

Explanation:

Given that

Mass of the pilot, m = 120 lb

Weight of the pilot, w = 119 lbf

Acceleration due to gravity, g = 32.05 ft/s²

Local acceleration of gravity of found by using the relation

Weight in lbf = Mass in lb * (local acceleration/32.174 lbft/s²)

119 = 120 * a/32. 174

119 * 32.174 = 120a

a = 3828.706 / 120

a = 31.905 ft/s²

Therefore, the local acceleration due to gravity at that elevation is 31.905 ft/s²

3 0
3 years ago
A spaceship whose rest length is 350m has a speed of .82c
igomit [66]

Answer:

t'=1.1897*10^{-6} s

t'=1.1897 μs

Explanation:

First we will calculate the velocity of micrometeorite relative to spaceship.

Formula:

u=\frac{u'+v}{1+\frac{u'*v}{c^{2}}}

where:

v is the velocity of spaceship relative to certain frame of reference =  -0.82c (Negative sign is due to antiparallel track).

u is the velocity of micrometeorite relative to same frame of reference as spaceship = .82c (Negative sign is due to antiparallel track)

u' is the relative velocity of micrometeorite with respect to spaceship.

In order to find u' , we can rewrite the above expression as:

u'=\frac{v-u}{\frac{u*v}{c^{2} }-1 }

u'=\frac{-0.82c-0.82c}{\frac{0.82c*(-0.82c)}{c^{2} }-1 }

u'=0.9806c

Time for micrometeorite to pass spaceship can be calculated as:

t'=\frac{length}{Relatie seed (u')}

t'=\frac{350}{0.9806c}     (c = 3*10^8 m/s)

t'=\frac{350}{0.9806* 3.0*10^{8} }

t'=1.1897*10^{-6} s

t'=1.1897 μs

4 0
3 years ago
Karla Ayala pulls a sled on an icy road (dangerous!). Because of Karla's pull, the tension force is 151 N, and the rope makes a
skelet666 [1.2K]

Answer:

W = 1418.9 J = 1.418 KJ

Explanation:

In order to find the work done by the pull force applied by Karla, we need to can use the formula of work done. This formula tells us that work done on a body is the product of the distance covered by the object with the component of force applied in the direction of that displacement:

W = F.d

W = Fd Cosθ

where,

W = Work Done = ?

F = Force = 151 N

d = distance covered = 10 m

θ = Angle with horizontal = 20°

Therefore,

W = (151 N)(10 m) Cos 20°

<u>W = 1418.9 J = 1.418 KJ</u>

6 0
3 years ago
Ngle of a block is 45 degrees. What is the refractive index​
lyudmila [28]
1.6 ??? I hope I’m right
3 0
3 years ago
Other questions:
  • A simple harmonic wave of wavelength 18.7 cm and amplitude 2.34 cm is propagating along a string in the negative x-direction at
    7·1 answer
  • Two thermally insulated cylinders, A and B, of equal volume, both equipped with pistons, are connected by a valve. Initially A h
    15·1 answer
  • . (a) How high a hill can a car coast up (engine disengaged) if work done by friction is negligible and its initial speed is 110
    11·1 answer
  • Why do all objects hit with the same velocity (ignoring air resistance) if dropped from the same height?
    10·2 answers
  • Which is a true statement regarding the law of mass balance? A.Solids, gases, and liquids have their own specific equations for
    7·1 answer
  • PLEASE HELP ME!<br> help on this cross word puzzle PLEASE!<br> 17 POINTS FOR HELPING THANKS!
    8·2 answers
  • The coefficent of static friction between the floor of a truck and a box resting on it is 0.28. The truck is traveling at 72.4 k
    15·1 answer
  • Describe five things that you do to make yourself feel warmer or cooler.
    15·1 answer
  • Please answer this!!! My science homework is going to be due in a few minutes!
    10·1 answer
  • Help<br> What's the average speed of each of these???
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!