Answer:
the law of motion
Explanation:
because the wheels are moving it means motion i am not sure which number law it is but I believe that it is 2nd but u should look it up to be safe
Answer:
a=2.378 m/s^2
Explanation:
a=Δv/Δt------eq(1)
Δv=Vf-Vi=120 km/h-0 km/h=120 km/h
or Δv=33.3 m/sec
or time=t=14s
putting values in eq(1)
a=33.3/14
a=2.378 m/s^2
Answer:
(a) x0 = 0m and y0 = 49.0m
(b) Vox = 15.0m/s Voy = 0m/s
(c) Vx = Vo = 15.0m/s and Vy = -gt
(d) X = 15.0t and y = 49.0 - 4.9t²
(e) t = 3.16s
(f) Vf = 34.4m/s
Explanation:
Answer:
Explanation:
Given that:
mass of stone (M) = 0.100 kg
mass of bullet (m) = 2.50 g = 2.5 ×10 ⁻³ kg
initial velocity of stone (
) = 0 m/s
Initial velocity of bullet (
) = (500 m/s)i
Speed of the bullet after collision (
) = (300 m/s) j
Suppose we represent
to be the velocity of the stone after the truck, then:
From linear momentum, the law of conservation can be applied which is expressed as:





∴
The magnitude now is:


Using the tangent of an angle to determine the direction of the velocity after the struck;
Let θ represent the direction:


Answer:
x(t) = - 6 cos 2t
Explanation:
Force of spring = - kx
k= spring constant
x= distance traveled by compressing
But force = mass × acceleration
==> Force = m × d²x/dt²
===> md²x/dt² = -kx
==> md²x/dt² + kx=0 ------------------------(1)
Now Again, by Hook's law
Force = -kx
==> 960=-k × 400
==> -k =960 /4 =240 N/m
ignoring -ve sign k= 240 N/m
Put given data in eq (1)
We get
60d²x/dt² + 240x=0
==> d²x/dt² + 4x=0
General solution for this differential eq is;
x(t) = A cos 2t + B sin 2t ------------------------(2)
Now initially
position of mass spring
at time = 0 sec
x (0) = 0 m
initial velocity v= = dx/dt= 6m/s
from (2) we have;
dx/dt= -2Asin 2t +2B cost 2t = v(t) --- (3)
put t =0 and dx/dt = v(0) = -6 we get;
-2A sin 2(0)+2Bcos(0) =-6
==> 2B = -6
B= -3
Putting B = 3 in eq (2) and ignoring first term (because it is not possible to find value of A with given initial conditions) - we get
x(t) = - 6 cos 2t
==>