Answer:
1. 266.22 g/mol
2. 168.81 g/mol
3. 223.35 g/mol
4. 199.88 g/mol
Explanation:
For you to calculate the molar mass of the salt you need to sum the molar masses of every element in the salt.
In the first salt, PdBr
, the subscript 2 means that there are 2 atoms of Br. So for you to calculate the molar mass of the salt you need to sum the molar mass of Pd and 2 times the molar mass of Br, as follows:
106 g/mol + 2(79.90 g/mol) = 266.22 g/mol
In the second salt BeBr
there are 2 atoms of Br and 1 of Be, so the molar mass is:
9.012 g/mol +2(79.90 g/mol) = 186.22 g/mol
In the third salt CuBr
there are 2 atoms of Br and 1 of Cu, so the molar mass is:
63.55 g/mol + 2(79.90 g/mol) = 223.35 g/mol
And in the fourth salt CaBr
there are 2 atoms of Br and 1 of Ca, so the molar mass is:
40.08 g/mol + 2(79.90 g/mol) = 199.88 g/mol
Answer:
311.25k
Explanation:
The question assumes heat is not lost to the surroundings, therefore
heat emitted from hotter sample (
)= heat absorbed by the less hotter sample(
)
The relationship between heat (q), mass (m) and temperature (t) is 
where c is specific heat capacity,
temperature change.
= 
equating both heat emitted and absorb


where the values with subset 1 are the values of the hotter sample of water and the values with subset 2 are the values of the less hot sample of water.
C will cancel out since both are water and they have the same specific heat capacity.
so we have

where m1 = 50g, t 1initial = 330, m2 = 30g, t2 initial = 280,t final (final temperature of the mixture) = ?
-50 * (
- 330) = 30 * (
- 280)
-50
+ 16500 = 30
- 8400
80
= 16500+8400
80
= 24900
= 24900/80 = 311.25k
Answer:
dependent variable: plant growth
independent: sunlight impact/amount of light
Explanation:
Answer:
101.56 of H₂O
Explanation:
The balanced equation for the reaction is given below:
CH₄ + 2O₂ —> CO₂ + 2H₂O
Next, we shall determine the mass of CH₄ that reacted and the mass of H₂O produced from the balanced equation. This is illustrated below:
Molar mass of CH₄ = 12 + (4×1.01)
= 12 + 4.04
= 16.04 g/mol
Mass of CH₄ from the balanced equation = 1 × 16.04 = 16.04 g
Molar mass of H₂O = (2×1.01) + 16
= 2.02 + 16
= 18.02 g/mol
Mass of H₂O from the balanced equation = 2 × 18.02 = 36.04g
SUMMARY:
From the balanced equation above,
16.04 g of CH₄ reacted to produce 36.04 g of H₂O.
Finally, we shall determine the mass of water, H₂O produced by the reaction of 45.2 g of methane, CH₄. This can be obtained as illustrated below:
From the balanced equation above,
16.04 g of CH₄ reacted to produce 36.04 g of H₂O.
Therefore 45.2 g of CH₄ will react to produce = (45.2 × 36.04)/16.04 = 101.56 g of H₂O.
Thus, 101.56 of H₂O were obtained.
Onic compounds<span> are formed from strong electrostatic interactions between </span>ions<span>, which result in higher melting points and electrical conductivity compared to </span>covalent compounds<span>. </span>Covalent compounds<span> have</span>bonds<span> where electrons are shared between atoms.</span>