Answer:
A) Ca(s) + C(s) + 3/2 O₂(g) → CaCO₃(s)
Explanation:
Standard enthalpy of formation of a chemical is defined as the change in enthalpy durin the formation of 1 mole of the substance from its constituent elements in their standard states.
The consituent elements of calcium carbonate, CaCO₃, in their standard states (States you will find this pure elements in nature), are:
Ca(s), C(s) and O₂(g)
That means, the equation that represents standard enthalpy of CaCO₃ is:
<h3>A) Ca(s) + C(s) + 3/2 O₂(g) → CaCO₃(s)</h3><h3 />
<em>Is the equation that has ΔH° = -1207kJ/mol</em>
Answer:
The mass percent of potassium is 39%
Option C is correct
Explanation:
Step 1: Data given
Atomic mass of K = 39.10 g/mol
Atomic mass of H = 1.01 g/mol
Atomic mass of C = 12.01 g/mol
Atomic mass of O = 16.0 g/mol
Step 2: Calculate molar mass of KHCO3
Molar mass KHCO3 = 39.10 + 12.01 + 1.01 + 3*16.0
Molar mass KHCO3 = 100.12 g/mol
Step 3: Calculate mass percent of potassium (K)
%K = (atomic mass of K / molar mass of KHCO3) * 100%
%K = (39.10 / 100.12) * 100%
%K = 39.05 %
The mass percent of potassium is 39%
Option C is correct
I think it is Global warming
The correct answer is<span> C) Water takes long to heat and cool down than other liquids.
It doesn't climb up the sides of a tube any more than other solutions do, and being a universal solvent has nothing to do with radiators. It does however take a long time to heat and cool down since you don't have a 100+ celsius burner to heat it up in an instant.</span>