the answer of these question is weight
First calculate the mole fraction of each substance:
Acetone: 2.88 mol ÷ (2.88 mol + 1.45 mol) = 0.665
Cyclohexane: 1.45 ÷ (2.88 mol + 1.45 mol) = 0.335
Raoult's Law: P(total) = P(acetone) · χ(acetone) + P(cyclohexane) · χ(cyclohexane).
P(total) = 229.5 torr · 0.665 + 97.6 torr · 0.335
P(total) = 185.3 torr
χ for acetone: 229.5 torr · 0.665 ÷ 185.3 torr = 0.823
χ for cyclohexane: 97.6 torr · 0.335 ÷ 185.3 torr = 0.177
<span>AX(aq)+BY(aq)→no precipitate
AX(aq)+BZ(aq)→precipitate
this two equations imply
</span>
AX(aq) is soluble and <span>BY(aq) is insoluble
the answer is
</span><span>E. BY</span>
Answer:
32.1 g
Explanation:
Step 1: Write the balanced combustion reaction
C₄H₁₀ + 6.5 O₂ ⇒ 4 CO₂ + 5 H₂O
Step 2: Calculate the moles corresponding to 97.4 g of CO₂
The molar mass of CO₂ is 44.01 g/mol.
97.4 g × 1 mol/44.01 g = 2.21 mol
Step 3: Calculate the moles of butane that produced 2.21 moles of carbon dioxide
The molar ratio of C₄H₁₀ to CO₂ is 1:4. The moles of C₄H₁₀ required are 1/4 × 2.21 mol = 0.553 mol
Step 4: Calculate the mass corresponding to 0.553 moles of C₄H₁₀
The molar mass of C₄H₁₀ is 58.12 g/mol.
0.553 mol × 58.12 g/mol = 32.1 g
Answer:
The volume increases by 100%.
Explanation:
<u>Step 1:</u> Data given
Number of moles ideal gas = 1 mol
Initial temperature = 305 K
Final temperature = 32°C + 273.15 = 305.15 K
Initial pressure = 2 atm
final pressure = 101 kPa = 0.996792 atm
R = gasconstant = doesn't change
V1 = initial volume
V2= the final volume
<u>Step 2: </u>Calculate volume of original gas
P*V = n*R*T
(P*V)/ T = constante
(P1 * V1) / T1 = (P2 * V2)/ T2
In this situation we have:
(2atm * V1)/ 305 = (0.996792 *V2) / 305.15
0.006557*V1 = 0.003266*V2
V2 = 2*V1
We see that the final volume is twice the initial volume. So the volume gets doubled. The volume increases by 100%.