Answer:
(a) 34.47 cm
(b)
south of west
Explanation:
Let us draw a figure representing the individual displacement vectors in the four jumps as shown in the figure attached with this solution.
Now, let us try to write the four displacement vectors in in terms of unit vectors along the horizontal and the vertical axis.

Now, the vector sum of all these vector will give the resultant displacement vector.

Part (a):
The magnitude of the resultant displacement vector is given by:

Part (b):
Since the resultant displacement vector indicates that the final position of the vector lies in the third quadrant, the vector will make some positive angle in the direction south of west given by:

At a point on the streamline, Bernoulli's equation is
p/ρ + v²/(2g) = constant
where
p = pressure
v = velocity
ρ = density of air, 0.075 lb/ft³ (standard conditions)
g = 32 ft/s²
Point 1:
p₁ = 2.0 lb/in² = 2*144 = 288 lb/ft²
v₁ = 150 ft/s
Point 2 (stagnation):
At the stagnation point, the velocity is zero.
The density remains constant.
Let p₂ = pressure at the stagnation point.
Then,
p₂ = ρ(p₁/ρ + v₁²/(2g))
p₂ = (288 lb/ft²) + [(0.075 lb/ft³)*(150 ft/s)²]/[2*(32 ft/s²)
= 314.37 lb/ft²
= 314.37/144 = 2.18 lb/in²
Answer: 2.2 psi
Answer:
v/c = 0.76
Explanation:
Formula for Length contraction is given by;
L = L_o(√(1 - (v²/c²))
Where;
L is the length of the object at a moving speed v
L_o is the length of the object at rest
v is the speed of the object
c is speed of light
Now, we are given; L = 65%L_o = 0.65L_o, since L_o is the length at rest.
Thus;
0.65L_o = L_o[√(1 - (v²/c²))]
Dividing both sides by L_o gives;
0.65 = √(1 - (v²/c²))
Squaring both sides, we have;
0.65² = (1 - (v²/c²))
v²/c² = 1 - 0.65²
v²/c² = 0.5775
Taking square root of both sides gives;
v/c = 0.76
The distance should be 4m from the wire in order to get the magnetic field of 0.100μ .
- The magnitude and direction of the magnetic field due to a straight wire carrying current can be calculated using the previously mentioned Biot-Savart law. Let "I" be the current flowing in a straight line and "r" be the distance. Then the magnetic field produced by the wire at that particular point is given by
...(1) - Since the wire is assumed to be very long, the magnitude of the magnetic field depends on the distance of the point from the wire rather than the position along the wire.
It is given that magnetic field 40.0 cm away from a straight wire is 1.00μT having current 2.00 A .
From equation (1) magnetic field 40.0 cm = 0.4m away from a straight wire is 1.00μT which is given by
.....(2)
From equation (1) magnetic field 'r' m away from a straight wire is 0.100μT which is given by
...(3)
On dividing equation (2) by (3) , we get

Learn more about magnetic field here :
brainly.com/question/27939568
#SPJ4
Explanation :
We know that the slope of velocity -time graph gives the acceleration. Acceleration of an object is defined as the rate of change of velocity i.e.

Suppose a driver suddenly applies brakes. In this case the initial velocity of his or her vehicle is more and the final velocity is less.
So, the acceleration is negative in this case i.e. the object is decelerating.
A negative slope on the velocity versus time graph indicates that an object is not accelerating. This statement is false as the object is decelerating.