Answer:
The colors of the sunset result from a phenomenon called scattering. Molecules and small particles in the atmosphere change the direction of light rays, causing them to scatter. ... The short-wavelength blue and violet are scattered by molecules in the air much more than other colors of the spectrum.
Explanation:
The planet that Punch should travel to in order to weigh 118 lb is Pentune.
<h3 /><h3 /><h3>The given parameters:</h3>
- Weight of Punch on Earth = 236 lb
- Desired weight = 118 lb
The mass of Punch will be constant in every planet;

The acceleration due to gravity of each planet with respect to Earth is calculated by using the following relationship;

where;
- M is the mass of Earth = 5.972 x 10²⁴ kg
- R is the Radius of Earth = 6,371 km
For Planet Tehar;

For planet Loput:

For planet Cremury:

For Planet Suven:

For Planet Pentune;

For Planet Rams;

The weight Punch on Each Planet at a constant mass is calculated as follows;

Thus, the planet that Punch should travel to in order to weigh 118 lb is Pentune.
<u>The </u><u>complete question</u><u> is below</u>:
Which planet should Punch travel to if his goal is to weigh in at 118 lb? Refer to the table of planetary masses and radii given to determine your answer.
Punch Taut is a down-on-his-luck heavyweight boxer. One day, he steps on the bathroom scale and "weighs in" at 236 lb. Unhappy with his recent bouts, Punch decides to go to a different planet where he would weigh in at 118 lb so that he can compete with the bantamweights who are not allowed to exceed 118 lb. His plan is to travel to Xobing, a newly discovered star with a planetary system. Here is a table listing the planets in that system (<em>find the image attached</em>).
<em>In the table, the mass and the radius of each planet are given in terms of the corresponding properties of the earth. For instance, Tehar has a mass equal to 2.1 earth masses and a radius equal to 0.80 earth radii.</em>
Learn more about effect of gravity on weight here: brainly.com/question/3908593
GPE=mgh
m= 12.5kg
g= 9.81 always
h=?
568=12.5*9.81*h
Solve for h
You will get 4.63m
Answer:
Depending on the relative position of the Earth the Sun and Neptune in the Earths orbit the distances are;
The closest (minimum) distance of Neptune from the Earth is 29 AU
The farthest (maximum) distance of Neptune fro the Earth is 31 AU
Explanation:
The following parameters are given;
The distance from the Earth to the Sun = 1 AU
The distance of Neptune from the Earth = 30 AU
We have;
When the Sun is between the Earth and Neptune, the distance is found by the relation;
Distance from the Earth to Neptune = 30 + 1 = 31 AU
When the Earth is between the Sun and Neptune, the distance is found by the relation;
Distance from the Earth to Neptune = 30 - 1 = 29 AU
Therefore, the closest distance from Neptune to the Earth in the Earth's Orbit is 29 AU
The farthest distance from Neptune to the Earth in the Earth's orbit is 31 AU.
Mendeleev created a periodic table with 63 initial elements.
He left gaps for unknown elements.
To this date, there are 118 elements in the periodic table.