Answer:
a) w = 7.27 * 10^-5 rad/s
b) v1 = 463.1 m/s
c) v1 = 440.433 m/s
Explanation:
Given:-
- The radius of the earth, R = 6.37 * 10 ^6 m
- The time period for 1 revolution T = 24 hrs
Find:
What is the earth's angular speed?
What is the speed of a point on the equator?
What is the speed of a point on the earth's surface located at 1/5 of the length of the arc between the equator and the pole, measured from equator?
Solution:
- The angular speed w of the earth can be related with the Time period T of the earth revolution by:
w = 2π / T
w = 2π / 24*3600
w = 7.27 * 10^-5 rad/s
- The speed of the point on the equator v1 can be determined from the linear and rotational motion kinematic relation.
v1 = R*w
v1 = (6.37 * 10 ^6)*(7.27 * 10^-5)
v1 = 463.1 m/s
- The angle θ subtended by a point on earth's surface 1/5 th between the equator and the pole wrt equator is.
π/2 ........... s
x ............ 1/5 s
x = π/2*5 = 18°
- The radius of the earth R' at point where θ = 18° from the equator is:
R' = R*cos(18)
R' = (6.37 * 10 ^6)*cos(18)
R' = 6058230.0088 m
- The speed of the point where θ = 18° from the equator v2 can be determined from the linear and rotational motion kinematic relation.
v2 = R'*w
v2 = (6058230.0088)*(7.27 * 10^-5)
v2 = 440.433 m/s
It’s going to be both answer A and B but if you can only answer one then it’s going to be B
The 61.0 kg object<span> ... F = (300kg)(6.673×10−11 </span>N m<span>^2 </span>kg<span>^−2)(61kg)/(.225m)^2. F = 2.412e-5 </span>N<span> towards the 495 </span>kg<span> block. </span>b. [195kg] ===.45m ... (b<span>) You cannot achieve this </span>position<span>. For the </span>net force<span> to become zero, one or both of the </span>masses<span> must ...</span>
Answer:
the electroscope separate by the presence of charge carriers
Explanation:
Metal bodies are characterized by having free (mobile) electrons. In the electroscope the plates are in balance; when the external metal ball is touched, a charge is introduced into the device, when the body that touched the ball is separated, an excess charge remains. This charge, being a metal, is distributed over the entire surface, giving a uniform density and an electric force of repulsion is created between the two charged sheets, which tends to separate the sheets. This force is counteracted by the tension component as the sheets are separated at a given angle, the separation reaches the point where
Fe - Tx = 0
Fe = Tx
In summary, the electroscope separate its leaves by the presence of charge carriers
Inertia. (Newton's Laws of Motion)