Answer:
speed of the bullet before it hit the block is 200 m/s
Explanation:
given data
mass of block m1 = 1.2 kg
mass of bullet m2 = 50 gram = 0.05 kg
combine speed V= 8.0 m/s
to find out
speed of the bullet before it hit the block
solution
we will apply here conservation of momentum that is
m1 × v1 + m2 × v2 = M × V .............1
here m1 is mass of block and m2 is mass of bullet and v1 is initial speed of block i.e 0 and v2 is initial speed of bullet and M is combine mass of block and bullet and V is combine speed of block and bullet
put all value in equation 1
m1 × v1 + m2 × v2 = M × V
1.2 × 0 + 0.05 × v2 = ( 1.2 + 0.05 ) × 8
solve it we get
v2 = 200 m/s
so speed of the bullet before it hit the block is 200 m/s
•THAT THE PROPAGATION OF SOUND WAVES NEED MEDIUM TO TRAVEL
•THE MEDIUM SHOULD POSSES ELASTICITY
•FOR THE FASTER PROPAGATION OF SOUND THE PARTICLES SHOULD BE VERY CLOSE TO EACH OTHER
An LED is useful because when a current passes through it, it gives out light.
Answer:
24 Coulumbs
Explanation:
Given data
time= 1 minute= 6 seconds
P=2 W
R= 12 ohm
We know that
P= I^2R
P/R= I^2
2/12= I^2
I^2= 0.166
I= √0.166
I= 0.4 amps
We know also that
Q= It
substitute
Q= 0.4*60
Q= 24 Columbs
Hence the charge is 24 Coulumbs