Answer:

Explanation:
is the angle between the velocity and the magnetic field. So, the magnetic force on the proton is:

A charged particle describes a semicircle in a uniform magnetic field. Therefore, applying Newton's second law to uniform circular motion:

is the centripetal force and is defined as:

Here
is the proton's speed and
is the radius of the circular motion. Replacing this in (1) and solving for r:

Recall that 1 J is equal to
, so:

We can calculate
from the kinetic energy of the proton:

Finally, we calculate the radius of the proton path:

Answer:
<em>v = 381 m/s</em>
Explanation:
<u>Linear Speed</u>
The linear speed of the bullet is calculated by the formula:

Where:
x = Distance traveled
t = Time needed to travel x
We are given the distance the bullet travels x=61 cm = 0.61 m. We need to determine the time the bullet took to make the holes between the two disks.
The formula for the angular speed of a rotating object is:

Where θ is the angular displacement and t is the time. Solving for t:

The angular displacement is θ=14°. Converting to radians:

The angular speed is w=1436 rev/min. Converting to rad/s:

Thus the time is:

t = 0.0016 s
Thus the speed of the bullet is:

v = 381 m/s
Answer:
The energy is 
(a) is correct option
Explanation:
Given that,
Energy = 4480 j
Weight of nitrogen = 20 g
Boil temperature = 77 K
Pressure = 1 atm
We need to calculate the internal energy
Using first law of thermodynamics


Put the value into the formula



We need to calculate the number of molecules in 20 g N₂
Using formula of number of molecules

Put the value into the formula


We need to calculate the energy
Using formula of energy

Put the value into the formula


Hence, The energy is 
Answer:
5 metre.
Explanation:
Wavelength = Velocity / Frequency
= 23,000/ 4,500
= 5 metre.
<span>If you are looking to get an object up the highest, shoot it straight up. If you want to go for a specific horizontal displacement, use the range equation. R = v2sin(twice the launch angle)/ g. g is the gravitaional constant, 9.8 meters per second. Use degrees for the angle. v is the launch velocity. R is the horizontal displacement. This formula only works if your start altitude and end altitude are the same, i.e. you must shoot over a level field.
it depends on the gravitational force of attraction of earth and air resistance.
if we are neglecting air resistance, the max.horizontal distance is according to this formulae,
V0/2 * sin (2theta)
where V0 is the initial velocity
theta is the angle with x axis and the projection.
There are a number of ways that you could find a horizontally displaced object. You could for example just look.</span>