Answer:
The average velocity of a train moving along a straight track if its displacement is 192 m was during a time period of 8.0 s is 24
.
Explanation:
Velocity is a physical quantity that expresses the relationship between the space traveled by an object and the time used for it. Then, the average velocity relates the change in position to the time taken to effect that change.

Velocity considers the direction in which an object moves, so it is considered a vector magnitude.
In this case, the displacement is 192 m and the time period is 8 s. Replacing:

Solving:
velocity= 24 
<em><u>The average velocity of a train moving along a straight track if its displacement is 192 m was during a time period of 8.0 s is 24 </u></em>
<em><u>.</u></em>
Angular velocity of the rotating tires can be calculated using the formula,
v=ω×r
Here, v is the velocity of the tires = 32 m/s
r is the radius of the tires= 0.42 m
ω is the angular velocity
Substituting the values we get,
32=ω×0.42
ω= 32/0.42 = 76.19 rad/s
= 76.19×
revolution per min
=728 rpm
Angular velocity of the rotating tires is 76.19 rad/s or 728 rpm.
You can use fixture wires: For installation in luminaires where they are enclosed and protected and not subject to bending and twisting and also can be used to connect luminaires to their branch circuit conductors.
<h3>What are some uses of fixture wires?</h3>
Fixture wires are flexible conductors that are used for wiring fixtures and control circuits. There are some special uses and requirements for fixture wires and no fixture can be smaller than 18 AWG
In modern fixtures, neutral wire is white and the hot wire is red or black. In some types of fixtures, both wires will be of the same color.
To know more about fixture wires, refer
brainly.com/question/26098282
#SPJ4
work is force x distance = 25 x 0.4
= 2.5x4 = 10joules
pwer would be 10j/2s watts .... 5 watts
Answer:
From the previous explanation Student No. 1 has the correct explanation
Explanation:
When the fluorescent lamp emits a light it has the shape of its emission spectrum, this light collides with the atoms of Nitrogen and excites it, so these wavelengths disappear, lacking in the spectrum seen by the observed, for which we would see an absorption spectrum
The nitrogen that was exited after a short time is given away in its emission lines, in general there are many lines, so the excitation energy is divided between the different emission lines, which must be weak
From the previous explanation Student No. 1 has the correct explanation