A. electrons<span> and </span>neutrons<span> B. </span>electrons<span> and </span>protons<span> C. </span>protons<span> and </span>neutrons<span> D. all particles are attracted to each other. According to atomic theory, </span>electrons<span> are usually found: A. in the </span>atomic nucleus<span> B. outside the nucleus, yet very near it because they are attracted to the </span>protons<span>.</span>
Answer:
F₁ = 4,120.2 N
F₂ = 3,924N
Explanation:
1) Balance of angular momentum around the end where F₁ is applied.
F₂ × 0.5m - F₁ × 0 = mass × g × 1m
⇒ F2 × 0.5 m= 20 kg × 9.81 m/s² × 1 m = 1,962 N×m
F₂ = 196.2 Nm / 0.5m = 3,924 N
2) Balance of forces
F₁ - F₂ = mg
F₁ = F₂ + mg = 3,924N + 20kg (9.81 m/s²) = 4,120.2 N
Answer:
beacause it's contracts
Explanation:
when using a large bottomed glass the hot water cools that's why is good to use thin bottomed glass
The maximum speed is 10.4 m/s
Explanation:
For a body in uniform circular motion, the centripetal acceleration is given by:

where
v is the linear speed
r is the radius of the circular path
In this problem, we have the following data:
- The maximum centripetal acceleration must be

where
is the acceleration of gravity. Substituting,

- The radius of the turn is
r = 10 m
Therefore, we can re-arrange the equation to solve for v, to find the maximum speed the ride can go at:

Learn more about centripetal acceleration:
brainly.com/question/2562955
#LearnwithBrainly
Answer:
Kepler's First Law: each planet's orbit about the Sun is an ellipse. The Sun's center is always located at one focus of the orbital ellipse. The Sun is at one focus. The planet follows the ellipse in its orbit, meaning that the planet to Sun distance is constantly changing as the planet goes around its orbit.