Nope......... Constant speed but change in direction can cause acceleration which would give a finite force........
<h2>Answer::</h2>
Humans (biosphere) built a dam out of rock materials (geosphere). Water in the lake (hydrosphere) seeps into the cliff walls behind the dam, becoming groundwater (geosphere), or evaporating into the air (atmosphere).','.
Answer:
1. 12 V
2a. R₁ = 4 Ω
2b. V₁ = 4 V
3a. A = 1.5 A
3b. R₂ = 4 Ω
4. Diagram is not complete
Explanation:
1. Determination of V
Current (I) = 2 A
Resistor (R) = 6 Ω
Voltage (V) =?
V = IR
V = 2 × 6
V = 12 V
2. We'll begin by calculating the equivalent resistance. This can be obtained as follow:
Voltage (V) = 12 V
Current (I) = 1 A
Equivalent resistance (R) =?
V = IR
12 = 1 × R
R = 12 Ω
a. Determination of R₁
Equivalent resistance (R) = 12 Ω
Resistor 2 (R₂) = 8 Ω
Resistor 1 (R₁) =?
R = R₁ + R₂ (series arrangement)
12 = R₁ + 8
Collect like terms
12 – 8 =
4 = R₁
R₁ = 4 Ω
b. Determination of V₁
Current (I) = 1 A
Resistor 1 (R₁) = 4 Ω
Voltage 1 (V₁) =?
V₁ = IR₁
V₁ = 1 × 4
V₁ = 4 V
3a. Determination of the current.
Since the connections are in series arrangement, the same current will flow through each resistor. Thus, the ammeter reading can be obtained as follow:
Resistor 1 (R₁) = 4 Ω
Voltage 1 (V₁) = 6 V
Current (I) =?
V₁ = IR₁
6 = 4 × I
Divide both side by 4
I = 6 / 4
I = 1.5 A
Thus, the ammeter (A) reading is 1.5 A
b. Determination of R₂
We'll begin by calculating the voltage cross R₂. This can be obtained as follow:
Total voltage (V) = 12 V
Voltage 1 (V₁) = 6 V
Voltage 2 (V₂) =?
V = V₁ + V₂ (series arrangement)
12 = 6 + V₂
Collect like terms
12 – 6 = V₂
6 = V₂
V₂ = 6 V
Finally, we shall determine R₂. This can be obtained as follow:
Voltage 2 (V₂) = 6 V
Current (I) = 1.5 A
Resistor 2 (R₂) =?
V₂ = IR₂
6 = 1.5 × R₂
Divide both side by 1.5
R₂ = 6 / 1.5
R₂ = 4 Ω
4. The diagram is not complete
<h2>Given :</h2>
- total charge = 9.0 mC = 0.009 C
Each electron has a charge of :

For producing 1 Cuolomb charge we need :
Now, for producing 0.009 C of charge, the number of electrons required is :
_____________________________
So, Number of electrons passing through the cross section in 3.6 seconds is :

Number of electrons passing through it in 1 Second is :
Now, in 10 seconds the number of electrons passing through it is :
_____________________________

In the mass spectrum of pentane, the presence of a peak with m/z = 15 is most likely due to the detection of A) methyl radical cation that has been lost from the spectrum.
<h3>Mass Spectrum</h3>
The m/z ratios of any ions contained in a sample displayed against their intensities that forms a mass spectrum.
The height of the peaks in any kind of mass spectrum denotes the relative abundance of the various components in the sample, and each peak in a mass spectrum displays a component that a distinct m/z is in the sample.
<h3>How do mass spectra function?</h3>
Only when a molecule has been transformed into a gas-phase ion can a mass spectrometer calculate the mass of the molecule.
In order to do this, it gives molecules an electrical charge and transforms the flow of electrically charged ions that results into a proportional electrical current that a data system can subsequently read.
<h3>Give an example of the mass spectral range.</h3>
Whenever any molecules are ionized in an ionization box, many different kinds of ions have been created.
To know more about Mass spectrum visit:
brainly.com/question/1698571
#SPJ4
Complete Question
In the mass spectrum of pentane, the presence of a peak with m/z = 15 is most likely to the detection of: _________-
A) Methyl Radical
B) Ethyl Radical
C) Propyl Radical
D) Butyl Radical