With this temperature the Earth Radiation will be centered on a Wavelength!
I believe that the balanced chemical reaction is:
C6H12O6 + 6 O2 → 6 CO2
+ 6 H2O
So the number of grams
of oxygen required is:
mass O2 required = 48
g C6H12O6 * (1 mole C6H12O6 / 180.16 g) * (6 mole O2 / 1 mole C6H12O6) * (32
grams O2 / 1 mole)
<span>mass O2 required =
51.15 grams</span>
Answer:
3.8 M
Explanation:
Volume of acid used VA= 57.0 - 37.5 = 19.5 ml
Volume of base used VB= 67.8 - 45.0 = 22.8 ml
Equation of the reaction
2HNO3(aq) + Ca(OH)2(aq) --------> Ca(NO3)2(aq) + 2H2O(l)
Number of moles of acid NA= 2
Number of moles of base NB= 1
Concentration of acid CA= ???
Concentration of base CB= 1.63 M
CAVA/CBVB = NA/NB
CAVANB = CBVBNA
CA= CBVBNA/VANB
CA= 1.63 × 22.8 × 2/ 19.5 × 1
CA= 3.8 M
HENCE THE MOLARITY OF THE ACID IS 3.8 M.
Answer:
the entropy change for the surroundings when 1.62 moles of CH4(g) react at standard conditions is −8.343 J/K
Explanation:
The balanced chemical equation of the reaction in the question given is:

Using standard thermodynamic data at 298K.
The entropy of each compound above are listed as follows in a respective order.
Entropy of (CH4(g)) = 186.264 J/mol.K
Entropy of (O2(g)) = 205.138 J/mol.K
Entropy of (CO2(g)) = 213.74 J/mol.K
Entropy of (H2O(g)) = 188.825 J/mol.K
The change in Entropy (S) of the reaction is therefore calculated as follows:


= -5.15 J/mol.K
Given that :
the number of moles = 1.62 of CH4(g) react at standard conditions.
Then;
The change in entropy of the rxn 
= −8.343 J/K