If Earth's axis was "straight up and down" instead of tilted, then ...
<span>-- There would be no seasons.
-- The climate at any one place would be the same all year around.
-- The days would be the same length, everywhere,
and all year around.
-- So would the nights.
-- The sun would be up a little more than 12 hours every day.
It would be down a little less than 12 hours every day.
-- At the middle of the day, the sun would be at the same height
in the sky all year around, not higher in some months and lower
in others.
-- The equator would be the only place on Earth where the sun
could ever be directly over your head.
-- If you were at the north pole or the south pole, the sun would be
down on the horizon, and it would just go around and around you
every day. It would never rise or set, and it would never get any
higher or lower.
</span>
Answer:
(a) You can tell that have the same strength because they have attracted the same amount of paper clips.
(b) Iron is used in electromagnets because steel retained magnetic properties after the power was turned off, but in the iron, the paper clips dropped off right away.
<h3><u>Answer;</u></h3>
100 times
<h3><u>Explanation;</u></h3>
- The largest stars are 100 times the mass of the Sun.
- <u>The giant stars are about 10 to 100 times the radius of the sun</u>, which means they are 100 times brighter than the sun.
- <em><u>The largest known star in terms of mass and brightness is known as the Pistol Star. It is believed to be 100 times as massive as our Sun, and 10,000,000 times as bright.</u></em>
Answer:
,Assume that the average volume of an adult human body is one-tenth
cubic meter (0.10 m) and that there are two billion (2.0 x 109)
adults in the world.
a. What would be the total volume of all the adults in the world?
b. Compute the length of one edge of a cubic container that has a
volume equal to the volume of all the adults in the world.
Answer:
<u>B</u>
Explanation:
Planets have different year lengths because it depends how far they revolve from a celestial body. Each planet has its own orbital period. Planets closer to the star will have a lower orbital period compared to the ones that lie far away from it.