Answer:
4.33 L
Explanation:
Assuming ideal behaviour and that all 0.300 moles of gas reacted, we can solve this problem using Avogadro's law, which states that at constant temperature and pressure:
Where in this case:
We <u>input the given data</u>:
- 2.16 L * 0.601 mol = V₂ * 0.300 mol
And <u>solve for V₂</u>:
Answer:
- The first picture attached is the diagram that accompanies the question.
- The<u> second picture attached</u> is the diagram with the answer.
Explanation:
In the box on the left there are 8 Cl⁻ ions and 8 Na⁺ ions.
The dissociaton equation for NaCl(aq) is:
- NaCl (aq) → Na⁺ (aq) + Cl⁻(aq)
The dissociation equation for CaCl₂ (aq) is:
- CaCl₂ (aq) → Ca²⁺ (aq) + 2Cl⁻(aq)
A 0.10MCaCl₂ (aq) solution will have half the number of CaCl₂ units as the number of NaCl units in a 0.20M NaCl (aq) solution.
Thus, while the 0.20M NaCl (aq) solution yields 8 ions of Na⁺ and 8 ions of Cl⁻, the 0.10MCaCl₂ (aq) solution will yield 4 ions of Ca²⁺ (half because the concentration if half) and 8 ions of Cl⁻ (first take half and then multiply by 2 because the dissociation reaction).
Thus, your drawing must show 4 dots representing Ca²⁺ ions and 8 dots representing Cl⁻ ions in the box on the right.
Answer:
oxidation- reduction
Explanation:
where gaining electronic reduces one element and losing them oxidize the other nitric acid is not only strong it is also a oxidizing agent
<h2>Oxidize: copper = Cu+2</h2>
Answer: The correct option is heterogeneous mixture whose components are attracted differently to a magnet.
Explanation: There are two types of mixtures:
1) Homogeneous mixtures: In these mixtures, the particles are uniformly distributed throughout the mixture. These particles cannot be separated.
2) Heterogeneous Mixtures: These are the mixtures where the particles are visible separated and are not-uniformly distributed. These particles can be separated easily.
If magnet is used to separate the components of a mixture, the heterogeneous mixtures will only get separated.
To separate the components by a magnet, the components of a mixture should attract the magnet differently. One component should attract the magnet and another should not. Hence, they can be easily separated.
Molarity=moles/liter
molarity=43/0.64
molarity=67.19moles/litre