Explanation:
hydropower energy is:
-renewable
-clean (doesn't produce toxins or emit harmful gases into the atmosphere)
-environment friendly
-cheap once installed
Answer:
#Molecules XeF₆ = 2.75 x 10²³ molecules XeF₆.
Explanation:
Given … Excess Xe + 12.9L F₂ @298K & 2.6Atm => ? molecules XeF₆
1. Convert 12.9L 298K & 2.6Atm to STP conditions so 22.4L/mole can be used to determine moles of F₂ used.
=> V(F₂ @ STP) = 12.6L(273K/298K)(2.6Atm/1.0Atm) = 30.7L F₂ @ STP
2. Calculate moles of F₂ used
=> moles F₂ = 30.7L/22.4L/mole = 1.372 mole F₂ used
3. Calculate moles of XeF₆ produced from reaction ratios …
Xe + 3F₂ => XeF₆ => moles of XeF₆ = ⅓(moles F₂) = ⅓(1.372) moles XeF₆ = 0.4572 mole XeF₆
4. Calculate number molecules XeF₆ by multiplying by Avogadro’s Number (6.02 x 10²³ molecules/mole)
=> #Molecules XeF₆ = 0.4572mole(6.02 x 10²³ molecules/mole)
= 2.75 x 10²³ molecules XeF₆.
That would be an endothermic reaction! :)
The first option Forsure .
Given data: <span>molar mass = 180.2 g/mol in 920.0 ml of water at 25 °c.
</span><span>the vapor pressure of pure water at 25 °c is 23.76 mm hg.
</span>Asked: <span>the vapor pressure of a solution made by dissolving 109 grams of glucose
</span><span>
Solution:
moles glucose = 109 g/ 180.2 g/mol=0.605
mass water = 920 mL x 1 g/mL = 920 g
moles water = 920 g/ 18.02 g/mol=51.1
mole fraction water = 51.1 / 51.1 + 0.605 =0.988
vapor pressure solution = 0.988 x 23.76 = 23.47 mm Hg</span>