Answer:
The statement that is not true is: 'Temperature does not affect the reaction rate'.
Explanation:
a) Temperature can change a reaction rate. <u> This is true</u>
Increasing the temperature increases the reaction rates because of the disproportionately large increase in the number of high energy collisions. It is only these collisions (possessing at least the activation energy for the reaction) which result in a reaction.
For example, the time taken to melt a metal will be much higher at a lower temperature but it will decrease as soon as we increase the temperature
b) The amount of reactants can increase the reaction rate.<u> This is true</u>
A higher concentration of reactants leads to more effective collisions per unit time, which leads to an increased reaction rate.
c) Temperature can decrease the reaction rate. <u>This is true </u>
Decreasing the temperature decreases the reaction rates because of the decrease in the number of high energy collisions. It will result in a slower reaction.
d) Temperature does not affect the reaction rate. <u>This is not true. </u>
The reaction rate is temperature dependent. The reaction rate increases with higher temperature and decreases with lower temperature.
Number of moles = 0.0688 moles of NaoH
volume = 0.250 L
Molarity = moles of solute / volume ( L )
M = 0.0688 / 0.250
M = 0.28 M
Answer B
Conduction - touching hot pot
Convection - oven cycling warm air
Conduction - touching a warm coffee mug
Heat from a fire - radiation
Heat from the sun to solar panel - radiation
Warm water rising - convection
Given the molar mass of Nitrogen is 14.01g/mol you can use that to solve for the moles of nitrogen.
0.235g(1mol/14.01g) = .0168 moles.
The maximum oxygen uptake is known as the VO2 max.