Answer:
A = 0.75 ×10² KJ.
B = 3.9 ×10³ dg
C = 0.22 × 10² μl.
Explanation:
A = 7.5 ×10⁴ j to kilo joules
7.5 ×10⁴ / 1000 = 0.75 ×10² KJ.
Joule is the smaller unit while kilo joule is the larger unit. One kilo joule equals to the thousand joule that's why we will divide the given value by 1000 in order to convert into KJ.
B = 3.9 ×10⁵ mg to decigrams.
3.9 ×10⁵ / 100 = 3.9 ×10³ dg
Decigram is larger unit while milligram is smaller unit. One decigram is equal to the 100 milligram. In order to convert the given value into decigram we have to divide the value by 100.
C = 2.21 ×10⁻⁴ dL to micorliters
2.21 ×10⁻⁴ ×10⁵ = 0.22 × 10² μl.
Deciliter is bigger unit then micro liter . One deciliter equals to the 100000 micro liters. In order to convert the dL into micro liter we have to multiply the given value with 100000.
Galactic is referring to the galaxy and cosmos! :)
Answer:
<u>The temperature difference is</u> 
Explanation:
The formula that is to used is :
Δ
Δ
<em>where ,</em>
- <em>Δ
is the heat supplied in calories = 300cal</em> - <em>
is the mass of water taken = m (assumed)</em> - <em>Δ
is the change in temperature</em> - <em>
is the specific heat of water =
</em>
ΔT :

Explanation:
To answer this question, we'll need to use the Ideal Gas Law:
p
V
=
n
R
T
,
where
p
is pressure,
V
is volume,
n
is the number of moles
R
is the gas constant, and
T
is temperature in Kelvin.
The question already gives us the values for
p
and
T
, because helium is at STP. This means that temperature is
273.15 K
and pressure is
1 atm
.
We also already know the gas constant. In our case, we'll use the value of
0.08206 L atm/K mol
since these units fit the units of our given values the best.
We can find the value for
n
by dividing the mass of helium gas by its molar mass:
n
=
number of moles
=
mass of sample
molar mass
=
6.00 g
4.00 g/mol
=
1.50 mol
Now, we can just plug all of these values in and solve for
V
:
p
V
=
n
R
T
V
=
n
R
T
p
=
1.50 mol
×
0.08206 L atm/K mol
×
273.15 K
1 atm
= 33.6 L
this is not the answer but it will help you
do by the formula it is on the answer