At equilibrium the concentrations of:
[HSO₄⁻] = 0.10 M;
[SO₄²⁻] = 0.037 M;
[H⁺] = 0.037 M;
There is initially very little H+ and no SO₄²⁻ in the solution. A salt is KHSO₄⁻. All KHSO₄⁻ will split apart into K⁺ and HSO₄⁻ ions. [HSO₄⁻] will initially be present at a concentration of 0.14 M.
HSO₄⁻ will not gain H⁺ to produce H₂SO₄ since H₂SO₄ is a strong acid. HSO₄⁻ may act as an acid and lose H⁺ to form SO₄²⁻. Let the final H⁺ concentration be x M. Construct a RICE table for the dissociation of HSO₄²⁻.
R
⇄ 
I 
C

E

×
for
. As a result,
![\frac{[H^+]. [SO_4^2^-]}{HSO_4^-} = K_a](https://tex.z-dn.net/?f=%5Cfrac%7B%5BH%5E%2B%5D.%20%5BSO_4%5E2%5E-%5D%7D%7BHSO_4%5E-%7D%20%3D%20K_a)
is large. It is no longer valid to approximate that
at equilibrium is the same as its initial value.

×
× 
Solving the quadratic equation for
since
represents a concentration;

Then, round the results to 2 significant figure;
Learn more about concentration here:
brainly.com/question/14469428
#SPJ4
The answer is 100 Pa.
The formula for calculating pressure is :
<u>Pressure = Force ÷ Area</u>
<u />
We are given that :
We also know that :
<u>Force = mass ×g</u>
<u />
So, force will be :
Now, we can finally calculate pressure :
1, 6, 2, 6
In the order you wrote them in
Answer:
See explanation
Explanation:
Electrons transition between energy levels in an atom due to gain or loss of energy. An electron may gain energy and move from its ground state to one of the accessible excited states. The electron quickly returns to ground state, emitting the energy previously absorbed as a photon of light. The wavelength of light emitted is measured using powerful spectrometers.
Atoms can be excited thermally or by irradiation with light of appropriate frequency.
Uranium fission is a property