Explanation:
The reaction equation will be as follows.

Calculate the amount of
dissolved as follows.

It is given that
= 0.032 M/atm and
=
atm.
Hence,
will be calculated as follows.
=
= 
= 
or, = 
It is given that 
As, ![K_{a} = \frac{[H^{+}]^{2}}{[CO_{2}]}](https://tex.z-dn.net/?f=K_%7Ba%7D%20%3D%20%5Cfrac%7B%5BH%5E%7B%2B%7D%5D%5E%7B2%7D%7D%7B%5BCO_%7B2%7D%5D%7D)
= 
= 
Since, we know that pH = ![-log [H^{+}]](https://tex.z-dn.net/?f=-log%20%5BH%5E%7B%2B%7D%5D)
So, pH = 
= 5.7
Therefore, we can conclude that pH of water in equilibrium with the atmosphere is 5.7.
Metals, for example Cesium and Francium
Less, because thermal energy is heat so if it gets colder there is less thermal energy.
T<span>he </span>Andes<span> range has many active volcanoes, which are distributed in four volcanic zones separated by areas of inactivity. The </span>Andean<span> volcanism is a result of subduction of the Nazca Plate and Antarctic Plate underneath the South American Plate.</span>
The activity series of metals as well as the electrode potential of metals can be used to compare the reactivity of metals.
<h3>What is used in comparing reactivity of metals?</h3>
The reactivity of metals can be compared using their electrode potentials which is a measures of the ability of the metal to donate electrons to another metal.
When comparing the reactivity of metals, the metal with the lesser negative electrode potential will be more reactive than another with a greater negative or positive electrode potential.
Therefore, the activity series of metals as well as the electrode potential of metals can be used to compare the reactivity of metals.
Learn more about activity series of metals at: brainly.com/question/17469010
#SPJ12