The answer is "D". This is because wind is very abundant on earth...
Explanation:
The point is that water is moving smoothly but that the solutes are not.Even though the containers are chemically different (chemical disequilibrium), once all the solutes in one container are contrasted to all the solutes in another container, both have the same total solutes concentrations (this means that they are in osmotic balance).
The cutoff frequency for magnesium is 8.93 x 10¹⁴ Hz.
<h3>What is cutoff frequency?</h3>
The work function is related to the frequency as
W0 = h x fo
where, fo = cutoff frequency and h is the Planck's constant
Given is the work function for magnesium is 3.70 eV.
fo = 3.7 x 1.6 x 10⁻¹⁹ / 6.626 x 10⁻³⁴
fo = 8.93 x 10¹⁴ Hz.
Thus, the cut off frequency is 8.93 x 10¹⁴ Hz.
Learn more about cutoff frequency.
brainly.com/question/14378802
#SPJ1
To solve this problem we will apply the concepts related to energy conservation. From this conservation we will find the magnitude of the amplitude. Later for the second part, we will need to find the period, from which it will be possible to obtain the speed of the body.
A) Conservation of Energy,


Here,
m = Mass
v = Velocity
k = Spring constant
A = Amplitude
Rearranging to find the Amplitude we have,

Replacing,


(B) For this part we will begin by applying the concept of Period, this in order to find the speed defined in the mass-spring systems.
The Period is defined as

Replacing,


Now the velocity is described as,


We have all the values, then replacing,


Concept:
Frequency- It is defined as the number of oscillations occur in one second.
Its SI unit is Hertz (Hz)
Given: Produced sound vibrations is 18,500 cycles in 0.75 seconds
∵ In 0.75 second, produced sound has oscillations = 18,500 cycles
∴ In 1.0 second, produced sound has oscillations = (18,500 ÷ 0.75) Hz
The frequency of the sound will be ≈ 24,667 Hz
From the study of the given graph, only the animals (c) Cats, (b) Moths and (a) Bats can hear the produced sound because their upper audible frequency range is greater than 24,667 Hz.