We can use the kinematic equation

where Vf is what we are looking for
Vi is 0 since we start from rest
a is acceleration
and d is the distance
we get
(Vf)^2 = (0)^2 + 2*(2)*(500)
(Vf)^2 = 2000
Vf = about 44.721
or 44.7 m/s [if you are rounding this by significant figures]
Answer:
○ D
Explanation:
A resistor is a passive electrical component that uses a circuit element with electric resistance. Resistors are used in electronics for reducing current flow, changing signal rates, dividing voltages, biasing active components, and terminating columns, among other applications.
I am joyous to assist you anytime.
Answer:
The current will be increased and also for the resistance.
Explanation:
The analysis of a direct current circuit can give us the explanation we need. Using the ohm law, which tells us that the voltage is equal to the product of the current by the resistance we have:
![V=I*R\\where\\V= voltage [V]\\I= amperes [amp]\\R=resistance [ohm]\\](https://tex.z-dn.net/?f=V%3DI%2AR%5C%5Cwhere%5C%5CV%3D%20voltage%20%5BV%5D%5C%5CI%3D%20amperes%20%5Bamp%5D%5C%5CR%3Dresistance%20%5Bohm%5D%5C%5C)
The voltage is equal to the potential difference therefore we will have these expressions:

If we increase the potential differential or circuit voltage, the current will also increase and so does the resistance by increasing the voltage. If we put numerical values in the equation given before, we can confirm this fact.
We're told that the planets have EQUAL MASS.
If that's true, then the strength of the gravitational forces between
each planet and the star depends only on the distance between
them ... the farther a planet is from the star, the smaller the
gravitational forces are IF we're talking about planets with
equal masses.
Planet-X is closer to the star, and Planet-Y is farther from it.
From this we know that the gravitational forces between the
star and Planet-X are greater, and the forces between the star
and Planet-Y are smaller.
'A' says this.
'B' is totally absurd, because it talks about gravity repelling things.
'C' says exactly the opposite for the two planets.
'D' says that distance doesn't matter. We know this is absurd,
simply because we're never pulled toward Jupiter in our daily life.