1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sp2606 [1]
3 years ago
12

You are riding on your bike and stop pedaling , coasting along the road. eventually, your bike slows down and stops. what happen

ed to the energy of your motion when your bike stopped?
Physics
1 answer:
andrew11 [14]3 years ago
8 0
<span>When still rolling your bike had kinetic energy, or energy in the form of motion. The forces resisting this motion--a mixture of many factors including air resistance, tire friction, friction in the hubs of the wheels, etc...--eventually decrease the kinetic energy of the bike to zero as it reaches a complete stop.</span>
You might be interested in
When a red giant completes helium fusion and collapses, it becomes a ______.
Firdavs [7]
<span>When a red giang complete helium fusion and collapses, it becomes a white dwarf. The correct option is C. White dwarf are very dense stars that are usually the size of a planet. It is a stellar core reminant which mainly made up of electron degenerated matters; its mass is comparable to that of the sun while its volume is comparable to that of the earth. </span>
5 0
3 years ago
Read 2 more answers
Four charges with equal magnitudes of 10.6 × 10-12 C are placed at the corners of a rectangle. The lengths of the sides of the r
cricket20 [7]

Answer:

Figure a. E_net = 99.518 N/C

Figure b. E_net = 177.151 N / C

Explanation:

Given:

- Attachment for figures missing in the question.

- The dimensions for rectangle are = 7.79 x 3.99 cm

- All four charges have equal magnitude Q = 10.6*10^-12 C

Find:

Find the magnitude of the electric field at the center of the rectangle in Figures a and b.

Solution:

- The Electric field generated by an charged particle Q at a distance r is given by:

                                         E = k*Q / r^2

- Where, k is the coulomb's constant = 8.99 * 10^9

Part a)

- First we see that the charges +Q_1 and +Q_3 produce and electric field equal but opposite in nature. So the sum of Electric fields:

                                 E_1 + E_3 = 0

- For Charges -Q_2 and +Q_4, they are equal in nature but act in the same direction towards the negative charge -Q_2. Hence, the net Electric Field at center of the rectangle can be given as:

                                  E_net = E_2 + E_4

                                  E_2 = E_4

                                  E_net = 2*E = 2*k*Q / r^2

- The distance r from each corner to mid-point of the rectangle is constant. It can be evaluated by Pythagoras Theorem as follows:

                                  r = sqrt ( (7.79/200)^2 + (3.99/200)^2 )

                                  r = sqrt ( 1.9151*10^-3 ) = 0.043762 m

- Plug the values in the E_net expression developed above:

                                  E_net = 2*(8.99*10^9)*(10.6*10^-12) / 1.9151*10^-3

                                 E_net = 99.518 N/C

Part b)

- Similarly for Figure b, for Charges -Q_2 and +Q_4, they are equal in nature but act in the same direction towards the negative charge -Q_2. Also, Charges -Q_1 and +Q_3, they are equal in nature but act in the same direction towards the negative charge -Q_1. These Electric fields are equal in magnitude to what we calculated in part a).

- To find the vector sum of two Electric Fields E_1,3 and E_2,4 we see the horizontal components of each cancels each other out. While the vertical components E_1,3 and E_2,4 are equal in magnitude and direction.

Hence,

                                  E_net = 2*E_part(a)*cos(Q)

- Where, Q is the angle between resultant, vertical in direction, and each of the electric field. We can calculate Q using trigonometry as follows:

                                  Q = arctan ( 3.99 / 7.79 ) = 27.12 degrees.

- Now, compute the net electric field E_net:

                                  E_net = 2*(99.518)*cos(27.12)

                                  E_net = 177.151 N / C

               

5 0
3 years ago
A snowball with a mass of 85 g hits the top hat of a 1.5 m tall snowman and sticks to it. the hat and the snowball, with a combi
LenaWriter [7]
Part (a): Velocity of the snowball
By conservation of momentu;
m1v1 + m2v2 = m3v3,

Where, m1 = mass of snowball, v1, velocity of snowball, m2 = mass of the hat, v2 = velocity of the hat, m3 = mass of snowball and the hat, v3 = velocity of snowball and the hut.

v2 = 0, and therefore,
85*v1 + 0 = 220*8 => v1 = 220*8/85 = 20.71 m/s

Part (b): Horizontal range
x = v3*t
But,
y = vy -1/2gt^2, but y = -1.5 m (moving down), vy =0 (no vertical velocity), g = 9.81 m/s^2

Substituting;
-1.5 = 0 - 1/2*9.81*t^2
1.5 = 4.905*t^2
t = Sqrt (1.5/4.905) = 0.553 seconds

Then,
x = 8*0.553 = 4.424 m
7 0
3 years ago
a concave mirror has a focal length of 18 cm. where will an image form if an object is placed 58 cm from the mirror
MAXImum [283]

Answer:

here

Explanation:

8 0
3 years ago
A gymnast with mass m1 = 43 kg is on a balance beam that sits on (but is not attached to) two supports. The beam has a mass m2 =
Liula [17]
<span>A gymnast with mass m1 = 43 kg is on a balance beam that sits on (but is not attached to) two supports. The beam has a mass m2 = 115 kg and length L = 5 m. Each support is 1/3 of the way from each end. Initially the gymnast stands at the left end of the beam. 
1)What is the force the left support exerts on the beam? 
2)What is the force the right support exerts on the beam? 
3)How much extra mass could the gymnast hold before the beam begins to tip? 
Now the gymnast (not holding any additional mass) walks directly above the right support. 

4)What is the force the left support exerts on the beam? 
5)What is the force the right support exerts on the beam?</span>
6 0
3 years ago
Other questions:
  • Which of the following is NOT true of electromagnetic waves? A. An electric field is created in any region of space in which a m
    12·2 answers
  • The capacitor in the flash of a disposable camera has a value of 165 μF. 1) What is the resistance of the filament in the bulb i
    15·1 answer
  • You ride your bike at 12.1 m/s directly away from your neighbor's trumpet sound and toward the sound of another neighbor's tromb
    6·1 answer
  • A physics student is conducting an optical experiment using an Optical Bench Kit available in many physics classrooms. A lit can
    8·1 answer
  • The tub of a washing machine goes into its spin cycle, starting from rest and gaining angular speed steadily for 8.00 s, at whic
    6·1 answer
  • A heat engine does 300 J of work during one cycle. In this cycle 900 J of energy is wasted.
    7·2 answers
  • Suppose an object is moving 2.1 m/s north on a river, but the river is flowing to the east at a velocity of 1.2 m/s. What is the
    12·1 answer
  • Cheetahs, the fastest of the great cats, can reach 50.0 miles/hour in 2.22 s starting from rest. Assuming that they have constan
    8·2 answers
  • When does a bouncing ball have the least amount of kinetic energy?
    5·2 answers
  • Briefly explain why experiments having faulty design or inconsistent data are problems for scientists. List several reasons
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!