Answer:
Relative dating is used to determine a fossils approximate age by comparing it to similar rocks and fossils of known ages. Absolute dating is used to determine a precise age of a fossil by using radiometric dating to measure the decay of isotopes, either within the fossil or more often the rocks associated with it.
Answer:
a) The magnitude of the force is 968 N
b) For a constant speed of 30 m/s, the magnitude of the force is 1,037 N
Explanation:
<em>NOTE: The question b) will be changed in other to give a meaningful answer, because it is the same speed as the original (the gallons would be 1.9, as in the original).</em>
Information given:
d = 106 km = 106,000 m
v1 = 28 m/s
G = 1.9 gal
η = 0.3
Eff = 1.2 x 10^8 J/gal
a) We can express the energy used as the work done. This work has the following expression:
Then, we can derive the magnitude of the force as:
b) We will calculate the force for a speed of 30 m/s.
If the force is proportional to the speed, we have:
It's been a while since I've studied this, but my answers would be:
13. 5730 years. The half-life of a substance is the amount of time it takes for half of it to decay, and, according to the graph, half of the substance remained at 5730 years.
14. 10740 years. According to the graph, only 25% of the carbon remained after 10740 years.
15. 15 atoms. According to the graph, only 12.5% of the carbon remained after 16110 years. 12.5% of 120 atoms is 15 atoms.
16. 1600 atoms. According to the graph, if a sample of carbon is 10740 years old, only 25% of it remains. To find the original amount, multiply the current amount by (100% / 25%), which equals 4. So, 4. 400 atoms * 4 = 1600 atoms is the original amount.
Answer:
the correct answer is practicing refusal strategies can help students stay sober
Explanation: