William Gilbert is known as the father of electricity.
The accurate answer is:
You could expect a white paper to have a red tone when viewed in a red light. This is the case because of the neutrality of the white paper.
Answer:
x = 727.5 km
Explanation:
With the conditions given using trigonometry, we can find the tangent
tan θ = CO / CA
With CO the opposite leg and CE is the adjacent leg which is the distance from the Tierral to Sun
D =150 10⁶ km (1000m / 1 km)
D = 150 10⁹ m.
We must take the given angle to radians.
1º = 3600 arc s
π rad = 180º
θ = 1 arc s (1º / 3600 s arc) (pi rad / 180º) =
θ = 4.85 10⁻⁶ rad
That angle is extremely small, so we can approximate the tangent to the angle
θ = x / D
x = θ D
x = 4.85 10-6 150 109
x = 727.5 103 m
x = 727.5 km
The H field is in units of amps/meter. It is sometimes called the auxiliary field. It describes the strength (or intensity) of a magnetic field. The B field is the magnetic flux density. It tells us how dense the field is. If you think about a magnetic field as a collection of magnetic field lines, the B field tells us how closely they are spaced together. These lines (flux linkages) are measured in a unit called a Weber (Wb). This is the analog to the electric charge, the Coulomb. Just like electric flux density (the D field, given by D=εE) is Coulombs/m², The B field is given by Wb/m², or Tesla. The B field is defined to be μH, in a similar way the D field is defined. Thus B is material dependent. If you expose a piece of iron (large μ) to an H field, the magnetic moments (atoms) inside will align in the field and amplify it. This is why we use iron cores in electromagnets and transformers.
So if you need to measure how much flux goes through a loop, you need the flux density times the area of the loop Φ=BA. The units work out like
Φ=[Wb/m²][m²]=[Wb], which is really just the amount of flux. The H field alone can't tell you this because without μ, we don't know the "number of field" lines that were caused in the material (even in vacuum) by that H field. And the flux cares about the number of lines, not the field intensity.
I'm way into magnetic fields, my PhD research is in this area so I could go on forever. I have included a picture that also shows M, the magnetization of a material along with H and B. M is like the polarization vector, P, of dielectric materials. If you need more info let me know but I'll leave you alone for now!
Recall that average velocity is equal to change in position over a given time interval,

so that the <em>x</em>-component of
is

and its <em>y</em>-component is

Solve for
and
, which are the <em>x</em>- and <em>y</em>-components of the copter's position vector after <em>t</em> = 1.60 s.


Note that I'm reading the given details as

so if any of these are incorrect, you should make the appropriate adjustments to the work above.