Faster than. Hope this helps!!!
Answer:
120 m/s if m/s means miles per second than
Explanation:
15 × 8
Answer:
a = 2 [m/s^2]
Explanation:
To solve this problem we must use the expressions of kinematics, we must bear in mind that when a body is at rest its velocity is zero.
where:
Vf = final velocity = 0
Vi = initial velocity = 60 [m/s]
a = desacceleration [m/s^2]
t = time = 30 [s]
Note: the negative sign of the above equation means that the car is slowing down, i.e. its speed decreases.
0 = 60 - (a*30)
a = 2 [m/s^2]
Recall that work is the amount of energy transferred to an object when it experiences a displacement and is acted upon by an external force. It is given a symbol of W and is measured in joules (J).
W=\vec{F}\cdot \Delta \vec{d}
We can use this formula to determine the work done by very specific forces, generating specific types of energy. We will examine three types of energy in this activity: gravitational potential, kinetic, and thermal. Before we start deriving equations for gravitational potential energy and kinetic energy, we should note that since work is the transfer and/or transformation of energy, we can also write its symbol as \Delta E.
Answer:
A procedure according to the norms.
Explanation:
If possible, proceed to fix the leak in no more than 30 days from the moment it was discovered.
Otherwise, during the first 30 days develop a planification to backfit the leak or, if needed, retire the appliance. This should be executed within one year.