Answer:
Towards the west
Explanation:
Magnetic force is the interaction between a moving charged particle and a magnetic field.
Magnetic force is given as
F = q (V × B)
Where F is the magnetic force
q is the charge
V is the velocity
B is the magnetic field
V×B means the cross product of the velocity and the magnetic field
NOTE:
i×i=j×j×k×k=0
i×j=k. j×i=-k
j×k=i. k×j=-i
k×i=j. i×k=-j
So, if the electron is moving southward, then, it implies that the velocity of it motion is southward, so the electron is in the positive z-direction
Also, the electron is curved upward due to the magnetic field, this implies that the force field is directed up in the positive y direction.
Then,
V = V•k
F = F•j
Then, apply the theorem
F •j = q ( V•k × B•x)
Let x be the unknown
From vector k×i =j.
This shows that x = i
Then, the magnetic field point in the direction of positive x axis, which is towards the west
You can as well use the Fleming right hand rule
The thumb represent force
The index finger represent velocity
The middle finger represent field
Answer:
The recoil speed is 
Solution:
Wavelength of a blue-green photon, 
Now, the energy associated with the blue-green photon:

where
h = Planck's constant
C = speed of light ion vacuum


Also, we know that the recoil speed can be calculated by the KInetic energy which is equal to the Energy of the blue-green photon:

where
= velocity of Hydrogen atom
= mass of H-atom
Now,



The four innermost planets in the Solar System (Mercury, Venus, Earth, and Mars)