Arrhenius' equation relates the dependence of rate constant of a chemical reaction to the temperature. The equation below is the Arrhenius equation

where k is the rate constant, T is the absolute temperature. As the temperature of the system increases, the rate constant also increases and vice versa.
Answer:
The two rays, CY and DM are diverging rays and when extended behind the mirror, they appear to intersect each other at point M'. Therefore, the properties of the images formed here are formed behind the mirror, between the pole and principal focus (f), the images are diminished and are virtual and erect.
Explanation:
<h2>Spherical Mirrors</h2>
- There are two kinds of spherical mirrors, concave and convex.
- The focal point (F) of a concave mirror is the point at which a parallel beam of light is "focussed" after reflection in the mirror. ...
- The focal length (f) and radius of curvature (R) are defined in the diagram at the right.
<h3>hope it helps and thanks for following </h3><h2>please give brainliest </h2>
Answer:
1.29 moles
0.753 moles
0.745 moles
Explanation:
PV=nRT
n=PV/RT
n=(1)(34.2)/(0.0821)(323.7)
n=1.29
n=PV/RT
n=(1)(22.4)=(0.0821)(362.15)
n=0.753
n=PV/RT
n=(1)(16.7)/(0.0821)(273.15)
n=0.745
In the ideal gas equation, T is measured in Kelvin.
Answer:
No.
Explanation:
Because the acceleration of falling objects is constant and is not affected by mass