Answer:
The total force is most nearly 940,000lbf
Explanation:
Total force = specific weight × volume
Volume = length × width × depth = 10ft × 30ft × 50ft = 15,000ft^3
Total force = 62.4lbf/ft^3 × 15,000ft^3 = 936,000lbf which is most nearly 940,000lbf
Answer:
The smallest possibility is 0.01E-22kgm/s
Explanation:
Using
Momentum= h/4πx
= 6.6x 10^-34Js/ 4(3.142* 50*10-12m)
= 0.01*10^-22kgm/s
Answer:
Final Velocity = √(eV/m)
Explanation:
The Workdone, W, in accelerating a charge, 2e, through a potential difference, V is given as a product of the charge and the potential difference
W = (2e) × V = 2eV
And this work is equal to change in kinetic energy
W = Δ(kinetic energy) = ΔK.E
But since the charge starts from rest, initial velocity = 0 and initial kinetic energy = 0
ΔK.E = ½ × (mass) × (final velocity)²
(Velocity)² = (2×ΔK.E)/(mass)
Velocity = √[(2×ΔK.E)/(mass)]
ΔK.E = W = 2eV
mass = 4m
Final Velocity = √[(2×W)/(4m)]
Final Velocity = √[(2×2eV)/4m]
Final Velocity = √(4eV/4m)
Final Velocity = √(eV/m)
Hope this Helps!!!
<span>In the physics lab, a cube slides down a frictionless incline as shown in the figure below, check the image for the complete solution:
</span>
Answer:
True
Explanation:
Modern safer and cheaper nuclear reactors can not only meet the range of our long term energy demands, they can also fight global warming.
Modern techniques provide ways to reduce radioactive waste amount. "A closed fuel cycle may be switched on for new kinds of nuclear plants. Alternatively, the waste is chemically dissuaded to transform the reusable element into fuel. This implies that nuclear waste would not be buried.