Answer:
T= 8.061N*m
Explanation:
The first thing to do is assume that the force is tangential to the square, so the torque is calculated as:
T = Fr
where F is the force, r the radius.
if we need the maximum torque we need the maximum radius, it means tha the radius is going to be the edge of the square.
Then, r is the distance between the edge and the center, so using the pythagorean theorem, r i equal to:
r = 
r = 0.5374m
Finally, replacing the value of r and F, we get that the maximun torque is:
T = 15N(0.5374m)
T= 8.061N*m
Answer:
α=0.625rad/s^2
v=340m/s
w=10rad/s
θ=320rad
Explanation:
Constant angular acceleration = ∆w/∆t
angular acceleration = 20/32
α=0.625rad/s^2
Linear velocity v=wr
v = 20×17= 340m/s
Average angular velocity
w0+w1/2
w= 0+20/2
w= 20/2
w=10rad/s
What angle did it rotate with
θ=wt
θ= 10×32
=320rad
<span>b. The coefficient of static friction for all contacting surfaces is μs=0.35. neglect friction at the rollers.
</span>
Answer:
Explanation:
Given


same charge on both masses
potential Energy due to Magnetic Field =Kinetic Energy of Particle


and we know
Force due to magnetic field will Provide centripetal Force


and B is equal for both particles
thus 



The frequency of the wave is 50 Hz
Explanation:
The frequency of the wave is defined as the number of cycles per second of the wave:

where
N is the number of cycles completed in a time t.
Frequency is measured in Hertz (Hz).
In this problems, the wave has
N = 100 pulses
in
t = 2.0 s
Therefore, its frequency is

Learn more about waves and frequency here:
brainly.com/question/5354733
brainly.com/question/9077368
#LearnwithBrainly