Answer:
Sodium - malleable, soft, and shiny
Silicon - has properties of both metals and nonmetals
Bromine - highly reactive gas
Argon - non-reactive gas
Explanation:
Sodium is an alkaline metal. Just like other alkaline metals, it's malleable, soft, and shiny.
Silicon is a metalloid. Metalloids are elements that have properties of both metals and nonmetals.
Bromine a highly reactive chemical element. It is a fuming red-brown liquid at room temperature that evaporates to form a similarly coloured gas.
Argon is a noble gas. Just like other noble gases, it's non-reactive.
Answer:
When melted or dissolved in water.
Explanation:
Potassium bromide in its solid form contains ions, which are charged atoms. Through the heating process, the melted potassium bromide becomes an ionic liquid. If solid potassium bromide is dissolved, for example in water, the resulting release of ions allows it to conduct electricity.
Explanation:
Protons have a positive charge. Electrons have a negative charge. The charge on the proton and electron are exactly the same size but opposite. Neutrons have no charge.
<span>D=m/v
Given:
d=1.193g/ml
v= 14.79ml
Solution
m=dv
m=1.193g/ml x 14.79ml
m= 17.644g
Density is the mass per volume of the material. Basically, it refers to the measurement of how crammed together is the matter. The formula to calculate density is rho = m/v wherein rho is the density, m stands for the mass and v stands for the volume.</span>
A. Zn²⁺
<h3>Further explanation</h3>
Given
Cations of several elements
Required
The least to be reduced
Solution
If we look at the voltaic series:
<em>Li-K-Ba-Ca-Na-Mg-Al-Mn- (H2O) -Zn-Cr-Fe²⁺-Cd-Co-Ni-Sn-Pb- (H) -Cu-Hg-Fe³⁺-Ag-Pt-Au </em>
The electrode which is easier to reduce than the hydrogen (H2) electrode has a positive sign (E red= +) and is located to the right of the voltaic series (right of H)
The electrode which is easier to oxidize than the hydrogen (H2) electrode and is difficult to experience reduction has a negative sign (E red= -) and is located to the left of the voltaic series (left of H)
Or you can look at the standard reduction potential value of the metals in the answer options, and the most negative reduction E° value which will be difficult to reduce.
The Zn metal is located far left of the other metals in the answer choices, so it is the most difficult to reduce