Answer: ice is less dense than liquid water. If ice was more dense, Earth would freeze.
Explanation: There are many reasons why life on Earth depends on the characteristics of water. One could discuss hydrogen bonds and its role as a solvent, but the unusual property of water is is the change in density with change in temperature. Water is densest at 4 degC, which is why ice floats - it is less dense than cold water (it melts quickly in warm water, so density isn’t impotant at higher temperatures). Most liquids are less dense than the solid, frozen form. If this was the case with water, any ice that formed would sink, and sease would freeze from the bottom up. Furthermore, the lowest layers would be insulated and would not all melt in summer. Thus over time, the seas would become a thin layer of liquid water at best, over solid ice. Life could not develop without liquid seas. In addition, ice is reflective, reducing the amount of sunlight absorbed, further reducing temperatures. Without ocean circulation, polar areas would be even colder, and there would be no rain.
Answer:
7.640 kg
Explanation:
Step 1: Write the balanced complete combustion equation for ethanol
C₂H₆O + 3 O₂ ⇒ 2 CO₂ + 3 H₂O
Step 2: Calculate the moles corresponding to 4 kg (4000 g) of C₂H₆O
The molar mass of C₂H₆O is 46.07 g/mol.
4000 g × 1 mol/46.07 g = 86.82 mol
Step 3: Calculate the moles of CO₂ released
86.82 mol C₂H₆O × 2 mol CO₂/1 mol C₂H₆O = 173.6 mol CO₂
Step 4: Calculate the mass corresponding to 173.6 moles of CO₂
The molar mass of CO₂ is 44.01 g/mol.
173.6 mol × 44.01 g/mol = 7640 g = 7.640 kg
The negative ion reactions that consist of the formation of carbon dioxide in the atmosphere is generally an exothermic reaction. By definition, an exothermic reaction takes place when the chemical process eventually releases heat as its by-product. It is in contrast in endothermic process wherein heat is absorbed.
Answer:

Explanation:
Hello!
In this case, in a dilution process, water is added to a solute in order to decrease its concentration but increase the volume of the solution. It means that if we have 20.0 mL of a 12.0-M solution of HCl and we want a 0.500-M solution, we need to apply the following formula considering that the moles remain unchanged:

Thus, solving for the final volume is:

So plugging in the values we obtain:

Now, since the initial volume of acid was 20.0 mL and the final volume is 480 mL, the added volume of distilled water is:

Best regards!