You will need the Gas Law:
pV = nRT
Since T and p are constant, R is constant too, then moles increases->volume will increase with the same ratio too!
Answer:
2.943 °C temperature change from the combustion of the glucose has been taken place.
Explanation:
Heat released on combustion of Benzoic acid; :
Enthaply of combustion of benzoic acid = 3,228 kJ/mol
Mass of benzoic acid = 0.590 g
Moles of benzoic acid = 
Energy released by 0.004831 moles of benzoic acid on combustion:

Heat capacity of the calorimeter = C
Change in temperature of the calorimeter = ΔT = 2.125°C



Heat released on combustion of Glucose: :
Enthaply of combustion of glucose= 2,780 kJ/mol.
Mass of glucose=1.400 g
Moles of glucose =
Energy released by the 0.007771 moles of calorimeter combustion:

Heat capacity of the calorimeter = C (calculated above)
Change in temperature of the calorimeter on combustion of glucose = ΔT'



2.943 °C temperature change from the combustion of the glucose has been taken place.
Do u have a picture if so post it please
Answer:
You should start with 63.54 grams of copper.
Explanation:
The chemical reactions are processes in which the nature of the substances changes, that is, from some initial substances called reactants, totally different ones called products are obtained.
In the chemical reaction, the formulas of reagents and products appear preceded by numbers (the stoichiometric coefficients) that indicate the proportions according to which the transformation occurs. So you can say that stoichiometry establishes relationships between the molecules or elements that make up the reactants of a chemical equation with the products of said reaction. The relationships that are established are MOLAR relationships between the compounds or elements that make up the chemical equation: always in MOLES.
The stoichiometric coefficients of a chemical equation are due to the fact that the atoms present before the reaction must be the same after the reaction, although they will have been rearranged to produce new substances.
If you want 2 moles of silver (Ag), for stoichiometry of the reaction you need a moles of copper Cu. Being the molar mass of copper Cu 63.54 g / mole, then:
1 mole*63.54 g/mole= 63.54 g
<u><em>
You should start with 63.54 grams of copper.</em></u>
<u><em></em></u>