To solve for the number of moles, we simply have to use the Avogadros number which states that there are 6.022 x 10^23 molecules per mole. Therefore:
number of moles = 6.67 X 10^40 chlorine molecules / (6.022 x 10^23 molecules / mole)
number of moles = 1.108 x 10^17 moles
Answer:
a. Phosphoric Acid
b. Acetic Acid
c. Hypochlorous Acid
Explanation:
A buffer works when the pH of this one is in pKa ± 1. That means, to find which buffer system works in some pH you need to find pKa:
pKa = -log Ka
<em>pKa Acetic acid:</em>
-log1.8x10⁻⁵ = 4.74
<em>pKa phosphoric acid:</em>
-log7.5x10⁻³ = 2.12
<em>pKa hypochlorous acid:</em>
-log3.5x10⁻⁸ = 7.46
a. For a pH of 2.8 the best choice is phophoric acid because its effective range is: 1.12 - 3.12 and 2.8 is between these values.
b. pH 4.5. Acetic acid. effective between pH's 3.74 - 5.74
c. pH 7.5. Hypochlorous acid that works between 6.46 and 8.46
Answer:
For 2. the answer is 15.0 mL
For other examples, you can solve by exact way as I have solved the 2nd example.
I have writen down all the balanced chemical reaction equation for examples 1, 3, 4, 5 for you. ( picture 2 )
Explanation:
Please see the step-by-step solution in the picture attached below.(picture 1)
Hope this answer can help you. Have a nice day!
Answer:
C. He shot tiny alpha particles through a piece of gold foil.
Explanation:
In the year 1911, Ernest Rutherford performed the gold foil experiment which gave a deeper perspective to the structure of an atom.
He simply collided a thin gold foil with an alpha particle which he generated from a radioactive source. He discovered that most of the alpha particles passed through the thin gold foil but a few were deflected back. His discovery led to the proposition of the nuclear model of the atom.