Answer:

Explanation:
To convert atoms to moles, Avogadro's Number must be used: 6.022*10²³.
This tells us the amount of particles (atoms, molecules, etc.) in 1 mole of a substance. In this case it is the atoms of potassium. We can create a ratio.

Multiply by the given number of moles: 15.2

The moles of potassium cancel.

The denominator of 1 can be ignored.

Multiply.

The original measurement of moles has 3 significant figures, so our answer must have the same. For the number we calculated that is the hundredth place. The 3 in the thousandth place tells us to leave 5.

In 15.2 moles of potassium, there are <u>9.15*10²⁴ atoms of potassium.</u>
The correct answer is option C, 5.02 x 10²² carbon atoms
Atomic mass of C = 12 g/mol
According to Avogadro, 1 mole of C has 6.023 x 10²³C atoms
Now 1 mole of C is equal to 12 g
Therefore, 12 g of C = 6.023 x 10²³ C atoms
1 g of C =
C atoms = 5.02 x 10²² C atoms
Becuz the sun refelt off the earth and on to the moon.