Answer:
10.87 g of Ethyl Butyrate
Solution:
The Balance Chemical Equation is as follow,
H₃C-CH₂-CH₂-COOH + H₃C-CH₂-OH → H₃C-CH₂-CH₂-COO-CH₂-CH₃ + H₂O
According to equation,
88.11 g (1 mol) Butanoic Acid produces = 116.16 g (1 mol) Ethyl Butyrate
So,
8.25 g Butanoic Acid will produce = X g of Ethyl Butyrate
Solving for X,
X = (8.25 g × 116.16 g) ÷ 88.11 g
X = 10.87 g of Ethyl Butyrate
Answer:
Aluminum is ideal for aircraft manufacture because it's lightweight and strong. Aluminum is roughly a third the weight of steel, allowing an aircraft to carry more weight and or become more fuel efficient. Furthermore, aluminum's high resistance to corrosion ensures the safety of the aircraft and its passengers.
Explanation:
<span>The scientists discovered that when they organized elements in order of increasing atomic mass there is a pattern of repetition of properties (A). The periodic law was developed by Dmitri Mendeleev and Lothar Mayer in 1869. They worked independently of each other and both created a periodic table. They both arranged the items on the table by weight and both suggested that certain properties of the elements recur. The Mendeleev table is the most important table because the values for the atomic mass are the most accurate.</span>
Answer:
This question is incomplete
Explanation:
This question is incomplete, however, the element that has 52 electrons only is Tellurium (Te) and when the electronic configuration of elements with more than 52 electrons are written, the 52nd electron is indicated/paired the same way the 52nd electron of Te is indicated/paired. Hence, while writing the electronic configuration of Te, it is written as
[Kr] 4d¹⁰ 5s² 5p⁴ where [Kr] is the electronic configuration of krypton. Based on this, we can deduce that the 52nd electron will be in the first orbital of the P subshell (as attached in the picture). This is because when indicating the electrons in the subshell, one electron will be spread across each orbital and if any electron is still remaining, it will be added starting from to the first orbital of the subshell, however no two electrons in an orbital in a subshell can have the same spin and hence must face opposite direction based on pauli's exclusion principle (as seen in attached); thus for the 5p-orbital of elements with 52 or more electrons, when one electron each is represented in each box (3 boxes in total) in the 5p-orbital, the remaining electron is paired with the the first electron in the first box of the 5p-orbital