<u>Answer:</u> The average atomic mass of lithium is 6.9241 u.
<u>Explanation:</u>
Average atomic mass of an element is defined as the sum of masses of each isotope each multiplied by their natural fractional abundance.
Formula used to calculate average atomic mass follows:
....(1)
- <u>For
isotope:</u>
Mass of
isotope = 6 u
Percentage abundance of
isotope = 7.59 %
Fractional abundance of
isotope = 0.0759
- <u>For
isotope:</u>
Mass of
isotope = 7 u
Percentage abundance of
isotope = 92.41%
Fractional abundance of
isotope = 0.9241
Putting values in equation 1, we get:
![\text{Average atomic mass of Lithium}=[(6\times 0.0759)+(7\times 0.9241)]](https://tex.z-dn.net/?f=%5Ctext%7BAverage%20atomic%20mass%20of%20Lithium%7D%3D%5B%286%5Ctimes%200.0759%29%2B%287%5Ctimes%200.9241%29%5D)

Hence, the average atomic mass of lithium is 6.9241 u.
polyethylene contains HC=CH units.
mass of this is 26 gram/mol
number of such units =13500/26
Distilling ocean water would be a good solution to meet this community's water needs because it will prevent some water borne diseases such as cholera, diarrhea, typhoid etc.
<h3>
Importance of water distillation</h3>
Water Distillation Systems has several advantages and some of the advantages include;
- It removes waterborne biological contaminants such as bacteria, viruses, organic and inorganic chemicals, heavy metals, etc
- It makes the water fit for consumption
Thus, distilling ocean water would be a good solution to meet this community's water needs because it will prevent some water borne diseases such as cholera, diarrhea, typhoid etc.
Learn more about water distillation here: brainly.com/question/3166914
#SPJ1
The first dissociation for H2X:
H2X +H2O ↔ HX + H3O
initial 0.15 0 0
change -X +X +X
at equlibrium 0.15-X X X
because Ka1 is small we can assume neglect x in H2X concentration
Ka1 = [HX][H3O]/[H2X]
4.5x10^-6 =( X )(X) / (0.15)
X = √(4.5x10^-6*0.15)
∴X = 8.2 x 10-4 m
∴[HX] & [H3O] = 8.2x10^-4
the second dissociation of H2X
HX + H2O↔ X^2 + H3O
8.2x10^-4 Y 8.2x10^-4
Ka2 for Hx = 1.2x10^-11
Ka2 = [X2][H3O]/[HX]
1.2x10^-11= y (8.2x10^-4)*(8.2x10^-4)
∴y = 1.78x10^-5
∴[X^2] = 1.78x10^-5 m
Metal is a conductor of heat