Answer:
Fc=5253
N
Explanation:
Answer:
Fc=5253
N
Explanation:
sequel to the question given, this question would have taken precedence:
"The 86.0 kg pilot does not want the centripetal acceleration to exceed 6.23 times free-fall acceleration. a) Find the minimum radius of the plane’s path. Answer in units of m."
so we derive centripetal acceleration first
ac (centripetal acceleration) = v^2/r
make r the subject of the equation
r= v^2/ac
ac is 6.23*g which is 9.81
v is 101m/s
substituing the parameters into the equation, to get the radius
(101^2)/(6.23*9.81) = 167m
Now for part
( b) there are two forces namely, the centripetal and the weight of the pilot, but the seat is exerting the same force back due to newtons third law.
he net force that maintains circular motion exerted on the pilot by the seat belts, the friction against the seat, and so forth is the centripetal force.
Fc (Centripetal Force) = m*v^2/r
So (86kg* 101^2)/(167) =
Fc=5253
N
Acrostic poem is a poem where the initials of the main word is given a respective sentence starting with that initial.
C- Can you see any changes happened in our surrounding?
L- Let me open your eyes and wake up to the reality.
I- Ignoring the unprecedented changes in our environment is worsening.
M- Making a move? Let's start it now.
A- Another day might not come.
T- Take this opportunity to show to world that we care.
E- Even to smallest thing that we can share.
The tangential velocity of the car's tire is the product of the angular velocity and radius of the car's tire which is 11(r) m/s.
<h3>
Angular velocity of the tire</h3>
The angular velocity of the tire is the rate of change of angular displacement of the tire with time.
The magnitude of the angular velocity of the tire is calculated as follows;
ω = 2πN
where;
- N is the number of revolutions per second
ω = 2π x (5.25 / 3)
ω = 11 rad/s
<h3>Tangential velocity of the tire</h3>
The tangential velocity of the car's tire is the product of the angular velocity and radius of the car's tire.
The magnitude of the tangential velocity is caculated as follows;
v = ωr
where;
- r is the radius of the car's tire
v = 11r m/s
Learn more about tangential velocity here: brainly.com/question/25780931