Answer:
Four fundamental forces are gravitational, electromagnetic, strong, and weak.
Explanation:
The gravitational and electromagnetic interactions, which produce significant long-range forces whose effects can be seen directly in everyday life and the strong and weak interactions, which produce forces at minuscule, subatomic distances and govern nuclear interactions.
Answer:
The value is 
Explanation:
From the question we are told
The pipe diameter at location 1 is 
The velocity at location 1 is 
The diameter at location 2 is 
Generally the area at location 1 is

=> 
=> 
=> 
Generally the area at location 1 is

=> 
=> 
Generally from continuity equation we have that

=> 
=> 
=> 
The answer is A
Materials that are good conductors of thermal energy are called thermal conductors. Metals are very good thermal conductors. Materials that are poor conductors of thermal energy are called thermal insulators. Gases such as air and materials such as plastic and wood are thermal insulators
Answer:
Gases, liquids and solids are all made up of microscopic particles, but the behaviors of these particles differ in the three phases. ... gas are well separated with no regular arrangement. liquid are close together with no regular arrangement. solid are tightly packed, usually in a regular pattern.
<h3>Hope this is fine for you</h3>
Answer: Pedaling your bike : acceleration :: applying the brakes : inertia.
The reason I think this to be the answer to the analogy is because there is energy and work used in both processes (and the unit focuses on forces); gravity is constant and does not change whether one pedals or applies brakes. And I do not think it's deceleration, as deceleration tends to equate to acceleration within the physics perspective.
Edit: I should also add that since you clarified that your unit is motion and forces, Newtons 1st law is the law of inertia. The way to change an objects motion for it to slow down is by applying an additional force. That resistance the bike experiences to slow is the process of inertia. Inertia happens in order to accelerate an object (either by slowing it down, or speeding it up): i.e., the resistance to change.