Bending occurs when one side of the wave enters the new medium before the other side of the wave. ... The bending occurs because the two sides of the wave are traveling at different speeds.
Answer:
a) 4.485 kg b) 3.94 kg
Explanation:
since the maximum tension the line can stand is 44 N and for question a the speed is constant (acceleration must be zero since the velocity or speed is not changing), F(tension) = mass * acceleration due to gravity (g) .
44 = m * 9.81m/s^2
m = 44/9.81 = 4.485kg
b) F(tension) = ma + mg ( where a is the acceleration of the body and g is the acceleration of the gravity)
44 = m (a +g)
44 = m (1.37 + 9.81)
44/11.18 = m
m = 3.94 kg
Answer:
-1m/s
Explanation:
We can calculate the speed of block A after collision
According to collision theory:
MaVa+MbVb = MaVa+MbVb (after collision)
Substitute the given values
5(3)+10(0) = 5Va+10(2)
15+0 = 5Va + 20
5Va = 15-20
5Va = -5
Va = -5/5
Va = -1m/s
Hence the velocity of ball A after collision is -1m/s
Note that the velocity of block B is zero before collision since it is stationary
Answer:
<em>The force of friction acting on the block has a magnitude of 15 N and acts opposite to the applied force.</em>
Explanation:
<u>Net Force
</u>
The Second Newton's law states that an object acquires acceleration when an unbalanced net force is applied to it.
The acceleration is proportional to the net force and inversely proportional to the mass of the object.
If the object has zero net force, it won't get accelerated and its velocity will remain constant.
The m=2 kg block is being pulled across a horizontal surface by a force of F=15 N and we are told the block moves at a constant velocity. This means the acceleration is zero and therefore the net force is also zero.
Since there is an external force applied to the box, it must have been balanced by the force of friction, thus the force of friction has the same magnitude acting opposite to the applied force.
The force of friction acting on the block has a magnitude of 15 N opposite to the applied force.