well, yes it will continue to swing but not forever. it will just a long time but eventually stop. the reason is because of the air resistance which will continue to damp the motion until the bob stops
Hey there! Let's get that problem solved!
First: Let's define, "solution."
Solution: <span>a liquid mixture in which the minor component (the solute) is uniformly distributed within the major component (the solvent).
Next: Ask yourself, "can a solution be taken apart?"
In some cases, yes. It can.
The solution of salt water for example, can be physically separated by evaporation. (place salt-water in a pot on a heated stove, place the cover to the pot on the opening, wait a few minutes, remove the top, and you can (and taste) the water without the salt!) </span><span />
Answer:
1335.12 mL of H2O
Explanation:
To calculate the mililiters of water that the solution needs, it is necessary to know that the volume of the solution is equal to the volume of the solute (NaOH) plus the volume of the solvent (H2O).
From the molarity formula we can first calculate the volume of the solution:


The volume of the solution as we said previously is:
Solution volume = solute volume + solvent volume
To determine the volume of the solute we first obtain the grams of NaOH through the molecular weight formula:


Now with the density of NaOH the milliliters of solute can be determined:


Having the volume of the solution and the volume of the solute, the volume of the solvent H2O can be calculated:
Solvent volume = solution volume - solute volume
Solvent volume = 1429 mL - 93.88 mL = 1335.12 mL of H2O
Answer:
Starch is a viable indicator in the titration process because it turns deep dark blue when iodine is present in a solution. When starch is heated in water, decomposition occurs and beta-amylose is produced
It is true that substances that have a high melting point and conduct electricity in the liquid phase are ionic substances, and if one of your options is NaCl, then that is the correct answer.