7 × 10² pounds of Cl₂ would be produced in a typical 8-h operating day.
<h3>What is Stoichiometry ?</h3>
Stoichiometry helps us use the balanced chemical equation to measures quantitative relationships and it is to calculate the amount of products and reactants that are given in a reaction.
<h3>What is Balanced chemical equation ?</h3>
The balanced chemical equation is the equation in which the number of atoms on the reactants side is equal to the number of atoms on the product side in an equation.
2Cl⁻ (aq) → Cl (g) + 2e⁻
According to stoichiometry, moles of Cl₂

= 4477 moles
Pounds Cl₂

= 7 × 10² lb
Thus from the above conclusion we can say that 7 × 10² pounds of Cl₂ would be produced in a typical 8-h operating day.
Learn more about Stoichiometry here: brainly.com/question/14935523
#SPJ4
Osmotic pressure is calculated by the product of the concentration in molarity, the temperature, the vant Hoff factor (3 for CaCl2 and 1 for sucrose) and R, universal gas constant. At the same temperature, the osmotic pressures of both solutions are equal.
π = CRTi
For CaCl2,
π = (1)RT(3) = 3RT
For sucrose,
π = (3)RT(1) = 3RT
Answer:
5.8μg
Explanation:
According to the rate or decay law:
N/N₀ = exp(-λt)------------------------------- (1)
Where N = Current quantity, μg
N₀ = Original quantity, μg
λ= Decay constant day⁻¹
t = time in days
Since the half life is 4.5 days, we can calculate the λ from (1) by substituting N/N₀ = 0.5
0.5 = exp (-4.5λ)
ln 0.5 = -4.5λ
-0.6931 = -4.5λ
λ = -0.6931 /-4.5
=0.1540 day⁻¹
Substituting into (1) we have :
N/N₀ = exp(-0.154t)----------------------------- (2)
To receive 5.0 μg of the nuclide with a delivery time of 24 hours or 1 day:
N = 5.0 μg
N₀ = Unknown
t = 1 day
Substituting into (2) we have
[5/N₀] = exp (-0.154 x 1)
5/N₀ = 0.8572
N₀ = 5/0.8572
= 5.8329μg
≈ 5.8μg
The Chemist must order 5.8μg of 47-CaCO3