Answer:
The orbital notations shows the sequence of filling electrons into the orbitals of sublevels. This filling is based on some certain principles. For an atom with 16 electrons, the orbital diagram is shown below: 1s²2s²2p⁶3s²3p⁴ The maximum number of electrons in each sublevel of the orbitals are: 2 electrons for s-sublevel with one orbital
6 electrons for p-sublevel with three orbital
10 electrons for d-sublevel with five orbital
14 electrons for f-sublevel with seven orbital
According to the Aufbau's principle, sublevels with lower energy are filled before those with higher energy.
1s 2s 2p 3s 3p 4s 3d etc
Pauli's exclusion principle shows that no two electrons can have the same set of values for the four quantum numbers. Simply, no two electrons can spin in the same direction. Hund's rule states that electrons go into degenerate orbitals of sub-levles(s,p,d and f) singly before pairing commence. This rule shows that in each energy level, as the electron goes into the degenerate orbitals, they fill it one by one before they begin to pair up. As we know, each degenerate orbital can only accomodate 2 electrons. From the orbital diagram 1s²2s²2p⁶3s²3p⁴, the 3p sublevel has 3 orbitals. In each of the orbitals, two electrons would occupy them to give a maximum capacity of 6. But the sublevel has just 4 electrons. Based on Hund's rule, an electron will go into each of the 3 orbitals first. The remaining electron will now pair with the first degenerate orbital. This makes a total of 4 electrons.
Explanation:
Answer:
5.00
Explanation:
because ignoring the pH solution part and doing the math it comes around to 1.0x5.0 which 1 times anything is itself so its 5
Answer:
The third option "A molecule of a compound is composed of at least two types of atoms" is correct
Explanation:
This question isn't about molecules, it's about elements and compounds.
Elements are made of one and only one type of atoms, while compounds are made of more than one type of atoms.
(Molecules are just groups of atoms, it doesn't matter what they're made of)
<u>Answer:</u> The amount of heat released when 0.211 moles of
reacts is 554.8 kJ
<u>Explanation:</u>
The chemical equation for the reaction of
with oxygen gas follows:

The equation for the enthalpy change of the above reaction is:
![\Delta H_{rxn}=[(5\times \Delta H_f_{(B_2O_3(s))})+(9\times \Delta H_f_{(H_2O(l))})]-[(2\times \Delta H_f_{(B_5H_9(l))})+(12\times \Delta H_f_{(O_2(g))})]](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%285%5Ctimes%20%5CDelta%20H_f_%7B%28B_2O_3%28s%29%29%7D%29%2B%289%5Ctimes%20%5CDelta%20H_f_%7B%28H_2O%28l%29%29%7D%29%5D-%5B%282%5Ctimes%20%5CDelta%20H_f_%7B%28B_5H_9%28l%29%29%7D%29%2B%2812%5Ctimes%20%5CDelta%20H_f_%7B%28O_2%28g%29%29%7D%29%5D)
We are given:

Putting values in above equation, we get:
![\Delta H_{rxn}=[(2\times (-1272))+(9\times (-285.4))]-[(2\times (73.2))+(12\times (0))]\\\\\Delta H_{rxn}=-5259kJ](https://tex.z-dn.net/?f=%5CDelta%20H_%7Brxn%7D%3D%5B%282%5Ctimes%20%28-1272%29%29%2B%289%5Ctimes%20%28-285.4%29%29%5D-%5B%282%5Ctimes%20%2873.2%29%29%2B%2812%5Ctimes%20%280%29%29%5D%5C%5C%5C%5C%5CDelta%20H_%7Brxn%7D%3D-5259kJ)
To calculate the amount of heat released for the given amount of
, we use unitary method, we get:
When 2 moles of
reacts, the amount of heat released is 5259 kJ
So, when 0.211 moles of
will react, the amount of heat released will be = 
Hence, the amount of heat released when 0.211 moles of
reacts is 554.8 kJ
He used the bacterium Streptomyces lividans in order to discover potassium ion channels
These are gram-positive that live in soil. They are non-pathogenic so they do not cause disease. They find application in biotechnology because of their ability to produce antibiotics and also produce proteins which are very industrially applicable.