Answer:
7.0*10-11m or 70Å
Explanation:
From Bragg's equation, w=2dsinx/n
Since all the parameters are specified in the question, we can easily go ahead to obtain the wavelength but we must convert the spacing given in angstroms to meters using the conversion factor provided as shown in the solution below:
Answer for number 1. Weight is the force of gravity. It acts in a downward direction—toward the center of the Earth.
Lift is the force that acts at a right angle to the direction of motion through the air. Lift is created by differences...
Thrust is the force that propels a flying machine in the direction of motion. Engines produce thrust.
2. For an airplane to takeoff, thrust must be greater than drag and lift must be greater than weight. To maintain level flight, lift must equal weight and thrust must equal drag. For landing, thrust must be less than drag, and lift must be less than weight.
3.When the forward forces are bigger than the opposing forces, you speed up (accelerate). As you go faster, the force of air resistance pushing back on you increases. Eventually, the forces become balanced (the forward forces are the same size as the opposing forces). Once the forces become balanced, your speed stays the same.
4.Every object on Earth has weight, a product of both gravity and mass. A Boeing 747-8 passenger airliner, for instance, has a maximum takeoff weight of 487.5 tons (442 metric tons), the force with which the weighty plane is drawn toward the Earth.
Using ideal gas equation,

Here,
P denotes pressure
V denotes volume
n denotes number of moles of gas
R denotes gas constant
T denotes temperature
The values at STP will be:
P=1 atm
T=25 C+273 K =298.15K
V=663 ml=0.663L
R=0.0821 atm L mol ⁻¹
Mass of gas given=1.25 g g
Molar mass of gas given=?


Putting all the values in the above equation,

Molar mass of the gas=46.15
A gas with a vapor density greater than that of air, would be most effectively displaced out off a vessel by ventilation.
The two following principles determine the type of ventilation: Considering the impact of the contaminant's vapour density and either positive or negative pressure is applied.
Consider a vertical tank that is filled with methane gas. Methane would leak out if we opened the top hatch since its vapour density is far lower than that of air. A second opening could be built at the bottom to greatly increase the process' efficiency.
A faster atmospheric turnover would follow from air being pulled in via the bottom while the methane was vented out the top. The rate of natural ventilation will increase with the difference in vapour density. Numerous gases that require ventilation are either present in fairly low concentrations or have vapor densities close to one.