1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Artist 52 [7]
3 years ago
7

Please help me please I will mark brainly

Chemistry
1 answer:
earnstyle [38]3 years ago
7 0
Photosynthesis has a huge role in the carbon cycle and in the Calvin cycle because photosynthesis is a way of transforming carbon dioxide into glucose, sugars, and oxygen.

Hope this helped :)
You might be interested in
If volumes are additive and 253 mL of 0.19 M potassium bromide is mixed with 441 mL of a potassium dichromate solution to give a
Alexxx [7]

Answer:

The concentration of the Potassium Dichromate solution is 0.611 M

Explanation:

First of all, we need to understand that in the final solution we'll have potassium ions coming from KBr and also K2Cr2O7, so we state the dissociation equations of both compounds:

KBr (aq) → K+ (aq) + Br- (aq)

K2Cr2O7 (aq) → 2K+ (aq) + Cr2O7 2- (aq)

According to these balanced equations when 1 mole of KBr dissociates, it generates 1 mole of potassium ions. Following the same thought, when 1 mole of K2Cr2O7 dissociates, we obtain 2 moles of potassium ions instead.

Having said that, we calculate the moles of potassium ions coming from the KBr solution:

0.19 M KBr: this means that we have 0.19 moles of KBr in 1000 mL solution. So:

1000 mL solution ----- 0.19 moles of KBr

253 mL solution ----- x = 0.04807 moles of KBr

As we said before, 1 mole of KBr will contribute with 1 mole of K+, so at the moment we have 0.04807 moles of K+.

Now, we are told that the final concentration of K+ is 0.846 M. This means we have 0.846 moles of K+ in 1000 mL solution. Considering that volumes are additive, we calculate the amount of K+ moles we have in the final volume solution (441 mL + 253 mL = 694 mL):

1000 mL solution ----- 0.846 moles K+

694 mL solution ----- x = 0.587124 moles K+

This is the final quantity of potassium ion moles we have present once we mixed the KBr and K2Cr2O7 solutions. Because we already know the amount of K+ moles that were added with the KBr solution (0.04807 moles), we can calculate the contribution corresponding to K2Cr2O7:

0.587124 final K+ moles - 0.04807 K+ moles from KBr = 0.539054 K+ moles from K2Cr2O7

If we go back and take a look a the chemical reactions, we can see that 1 mole of K2Cr2O7 dissociates into 2 moles of K+ ions, so:

2 K+ moles ----- 1 K2Cr2O7 mole

0.539054 K+ moles ---- x = 0.269527 K2Cr2O7 moles

Now this quantity of potassium dichromate moles came from the respective  solution, that is 441 mL, so we calculate the amount of them that would be present in 1000 mL to determine de molar concentration:

441 mL ----- 0.269527 K2Cr2O7 moles

1000 mL ----- x = 0.6112 K2Cr2O7 moles = 0.6112 M

6 0
3 years ago
Can someone answer dis:
SVEN [57.7K]

Answer:

If we subtract the atomic number from the atomic mass: atomic mass - atomic number = number of protons + number of neutrons - number of protons. Thus we get the number of neutrons present in an atom when we subtract the atomic number from the atomic mass.

Explanation: hope this helps???

7 0
2 years ago
Read 2 more answers
What is the molarity of a KOH solution if it requires 20 milliters of 2.0m HCL to exactcly neutalize 20 milliters of the KOH sol
soldier1979 [14.2K]
HCL 2.0x 3.6790= KOH SOLITION
6 0
3 years ago
Read 2 more answers
In a hydrogen bomb, hydrogen is converted into:
Alona [7]

Answer:

helium ................

8 0
2 years ago
Ethanol melts at -114 degree C. The enthalpy of fusion
Brut [27]

Answer: The heat required is 6.88 kJ.

Explanation:

The conversions involved in this process are :

(1):ethanol(s)(-135^0C)\rightarrow ethanol(s)(-114^0C)\\\\(2):ethanol(s)(-114^0C)\rightarrow ethanol(l)(-114^0C)\\\\(3):ethanol(l)(-114^0C)\rightarrow ethanol(l)(-50^0C)

Now we have to calculate the enthalpy change.

\Delta H=[m\times c_{p,s}\times (T_{final}-T_{initial})]+n\times \Delta H_{fusion}+[m\times c_{p,l}\times (T_{final}-T_{initial})]+n\times \Delta H_{vap}+[m\times c_{p,g}\times (T_{final}-T_{initial})]

where,

\Delta H = enthalpy change = ?

m = mass of ethanol = 25.0 g

c_{p,s} = specific heat of solid ethanol= 0.97 J/gK

c_{p,l} = specific heat of liquid ethanol = 2.31 J/gK

n = number of moles of ethanol = \frac{\text{Mass of ethanol}}{\text{Molar mass of ethanol}}=\frac{25.0g}{46g/mole}=0.543mole

\Delta H_{fusion} = enthalpy change for fusion = 5.02 KJ/mole = 5020 J/mole

T_{final}-T_{initial}=\Delta T = change in temperature

The value of change in temperature always same in Kelvin and degree Celsius.

Now put all the given values in the above expression, we get

\Delta H=[25.0 g\times 0.97J/gK\times (-114-(-135)K]+0.534mole\times 5020J/mole+[25.0g\times 2.31J/gK\times (-50-(-114))K]

\Delta H=6885.93J=6.88kJ     (1 KJ = 1000 J)

Therefore, the heat required is 6.88 kJ

3 0
2 years ago
Other questions:
  • Which of the following reactions are redox reactions? Which of the following reactions are redox reactions? Ca(s)+Cl2(g)→CaCl2(s
    7·1 answer
  • What does the average atomic mass on the periodic table tell you?
    8·1 answer
  • Arrange the core steps of the scientific method in sequential order
    7·2 answers
  • ( Balance each equation) Na + MgF2 NaF + Mg
    5·1 answer
  • What do fossil fuels come from?
    12·1 answer
  • Help me, I’m failing chem
    7·2 answers
  • This is the chemical formula for zinc bromate: . Calculate the mass percent of oxygen in zinc bromate. Round your answer to the
    8·1 answer
  • Provide a set of step by step instructions to make 750 mL of 1.5 M calcium chloride solution.
    10·1 answer
  • Acrostic poem for selective breeding
    11·1 answer
  • The reaction of charcoal (carbon) and oxygen is sped up by grinding the charcoal into a fine powder. This is an example of:
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!