Answer:
The reaction shifts to the left.
Explanation:
Equilibrium constant (K) = 46.3
Reaction Quotient (Q) = 525
The relationship between Q and K with their implications are given as;
K = Q (No net reaction)
K > Q (Reaction shifts to the right)
K < Q (Reaction shifts to the left)
Since in this question, Q (525) > K (46.3)
The reaction shifts to the left.
Answer:
14175 j heat released.
Explanation:
Given data:
Mass of aluminium = 350.0 g
Initial temperature = 70.0°C
Final temperature = 25.0°C
Specific heat capacity of Aluminium = 0.9 j/g.°C
Heat changed = ?
Solution:
Specific heat capacity:
It is the amount of heat required to raise the temperature of one gram of substance by one degree.
Formula:
Q = m.c. ΔT
Q = amount of heat absorbed or released
m = mass of given substance
c = specific heat capacity of substance
ΔT = change in temperature
Heat change:
ΔT = Final temperature - initial temperature
ΔT = 25.0°C - 70°C
ΔT = -45°C
Q = m.c. ΔT
Q = 350 g × 0.9 j/g.°C × -45°C
Q = -14175 j
Answer:
8
Explanation:
From the question given above, the following data were obtained:
t–butyl ion = (CH₃)₃C⁺
Number of valence electron =?
The valence electron(s) talks about the combining power of an element or compound as the case may be.
Considering the t–butyl ion, (CH₃)₃C⁺ we can see that it has a charge of +1 indicating that it has given out 1 electron to attain the stable octet configuration which has a valence electrons of 8. Thus, the valence electron of t–butyl ion, (CH₃)₃C⁺ is 8
Answer:
C.
Explanation:
![\frac{1x10}x^{-14} = 1x10^{-9} \\ x =1x10^{-5} \\\\[OH][H]= 1x10^{-14}](https://tex.z-dn.net/?f=%5Cfrac%7B1x10%7Dx%5E%7B-14%7D%20%3D%201x10%5E%7B-9%7D%20%5C%5C%20x%20%3D1x10%5E%7B-5%7D%20%5C%5C%5C%5C%5BOH%5D%5BH%5D%3D%201x10%5E%7B-14%7D)
The concetration can be found by dividing the water ph constant by the [H=] or [OH] to find the other