Answer:
1000 kgm²/s, 400 J
1000 kgm²/s, 1000 J
600 J
Explanation:
m = Mass of astronauts = 100 kg
d = Diameter
r = Radius = 
v = Velocity of astronauts = 2 m/s
Angular momentum of the system is given by

The angular momentum of the system is 1000 kgm²/s
Rotational energy is given by

The rotational energy of the system is 400 J
There no external toque present so the initial and final angular momentum will be equal to the initial angular momentum 1000 kgm²/s

Energy

The new energy will be 1000 J
Work done will be the change in the kinetic energy

The work done is 600 J
Answer:
Light refracts when its speed changes as it enters a new medium.
Explanation:
Bending of light wave while it entering a medium with different speed is called refraction of light. Light passing from a faster medium to the slower medium bends the light rays toward the normal to boundary between two media. The amount of the bending of light depends on refractive index of the two media which is described by the Snell's Law. The angle of incidence is not equal to angle of refraction. Rainbow is caused but this refraction phenomena. Also Refraction is used in magnifying glasses, prism and lenses
Answer:
here
Explanation:
Climate is determined by the temperature and precipitation characteristics of a region over time. The temperature characteristics of a region are influenced by natural factors such as latitude, elevation and the presence of ocean currents.
Before you start working on any motion problem, YOU decide which direction you're going to call 'positive'. Everybody almost always calls UP positive, and the acceleration of gravity points down, so it winds up negative. But you could just as well call DOWN the positive direction. Then, the cannonball is fired with a negative vertical speed, and the acceleration of gravity eventually robs all of its negative speed, and makes it start falling in the positive direction. The whole thing is your choice.
Answer:
The sled slides d=0.155 meters before rest.
Explanation:
m= 60 kg
V= 2 m/s
μ= 0.3
g= 9.8 m/s²
W= m * g
W= 588 N
Fr= μ* W
Fr= 176.4 N
∑F = m * a
a= (W+Fr)/m
a= 12.74m/s²
t= V/a
t= 0.156 s
d= V*t - a*t²/2
d= 0.155 m